
Chapter 3

Direct3D Devices

“Lay down a method for everything, and stick to it
inviolably, as far as unexpected incidents may allow.”
Lord Chesterfield: Letter to his son, February 5, 1750

3.1 Overview

This chapter introduces the Direct3D device object which provides an abstrac-
tion of the rendering pipeline. The operation of the pipeline is configured
through the device’s property methods. Images are drawn on the device through
2D pixel copy operations, or through the rendering of three dimensional scenes.

A scene is a collection of three dimensional objects that are projected onto
the render target surface from the viewpoint of a synthetic camera. Each object
in a scene is described by a collection of geometric primitives, such as points,
lines and triangles, with the device’s action methods.

The pipeline converts geometric descriptions into pixels on the render target
surface through the process of rasterization. Graphic primitives are rendered
in the order in which they are described to the devices similar to the way a CPU
executes binary instructions sequentially through memory.

The entire graphics pipeline is controlled through the properties of the de-
vice. The properties are manipulated through the Get and Set methods of the
device. In addition to the fixed-function pipeline provided by traditional graph-
ics APIs, Direct3D provides a programmable graphics pipeline through the use
of vertex and pixel shaders.

Every device has a distinct set of capabilities. Direct3D specifies an ab-
stract machine interface, but does not provide a software emulation for a feature
not provided directly by the hardware’s driver. A device provides specific infor-
mation on its capabilities to allow an application to adapt to the capabilities of
the device.

69

70 CHAPTER 3. DIRECT3D DEVICES

Devices are containers for resource objects. The resource management
provided by Direct3D is presented and the IDirect3DResource9 interface is
summarized.

Much of the behavior of the graphics pipeline is controlled by render states.
There are a large number of render states which are summarized in this chapter.
Each section of the pipeline will discuss the specifics of its associated render
states, if any.

An application frequently needs to set groups of render states. A code idiom
is presented for making this easier. Groups of device properties, including render
states, can be cached and set as a group with state blocks.

3.2 IDirect3DDevice9

The IDirect3DDevice9 interface controls the behavior of the pipeline and con-
tains a large number of properties and methods. In the subsequent chapters
we will explore each property of the device and how it affects rendering. The
device interface is summarized in interface 3.1. The device method prototypes
are given in the text when they are introduced.

The device object represents the rendering pipeline. We get images from the
pipeline by supplying it with scene data and instructing it to render scenes into
images. Scene data consists of geometric data defining shapes in space and data
defining the appearance of the shapes.

We can break the pipeline up into large sections consisting of vertex data
assembly, vertex processing, primitive assembly and rasterization, pixel pro-
cessing, the frame buffer and video scan out. The vertex data assembly section
gathers together vertex components from a collection of data streams to as-
semble a complete vertex and its associated data. Vertex processing performs
computations on each vertex such as the transformation and lighting of ver-
tices. The processed vertex data is then assembled into graphic primitives and
rasterized into a stream of pixels. Pixel processing performs computations on
each rasterized pixel to determine the final color of the pixel that will be written
into the frame buffer. The frame buffer performs a read/modify/write opera-
tion combining processed pixels from the rasterizer with the existing pixels in
the render target. Video scan out reads the pixels out of the frame buffer for
conversion into video signals displayed by the monitor.

Table 3.1 organizes the methods on the device interface by pipeline sec-
tion, table 3.2 organizes the members and flags in the capabilities structure by
pipeline section, and table 3.5 organizes the render states and texture stage
states by pipeline section. The poster accompanying this book expands on the
figures presented in this chapter with a detailed depiction of the entire graphics
pipeline, their associated methods, device capabilities and render states.

Scenes are rendered to the render target selected on the device. If the render
target is part of a swap chain, the render target can be made visible on the device
through presentation. (The render target may not be part of a swap chain if the
render target is a texture resource.) You present renderings for display through

3.2. IDIRECT3DDEVICE9 71

a swap chain as the last thing you do when rendering a scene.
A swap chain consists of one or more back color buffers into which images

are rendered. A device is always associated with at least one swap chain and
in windowed mode additional swap chains can be created to obtain multiple
presentable surfaces.

In exclusive mode, a Direct3D application can control video scan out of the
images in the frame buffer to the video monitor. The monitor can be driven in
any of the display modes returned by IDirect3D9 for the adapter.

The philosophy of the Direct3D object is to expose the capabilities of the
hardware to the application programmer and let the application adapt to the
hardware. The API does not, as a general rule, emulate features missing from
the hardware. Differences in devices can be present based on device type and
capability.

The COM objects returned by device properties have a reference added to
them before they are returned. The application should call Release on all such
objects when they are no longer needed, or a memory leak will result.

Interface 3.1: Summary of the IDirect3DDevice9 interface.

IDirect3DDevice9

Read-Only Properties
GetAvailableTextureMem Available texture memory, in KB.
GetBackBuffer Back buffer image surface interface
GetCreationParameters Device creation parameters
GetDeviceCaps Device capabilities structure
GetDirect3D Creating IDirect3D9 interface.
GetDisplayMode Video display mode.
GetFrontBufferData A copy of the front buffer.
GetNumberOfSwapChains Number of swap chains.
GetRasterStatus Raster display status.
GetRenderTargetData Surface data in a render target.
GetSwapChain Swap chain on the device.

Write-Only Properties
SetCursorPosition Cursor position.
SetCursorProperties Cursor image and hot spot.
SetDialogBoxMode GDI compatability flag.

Properties
GetClipPlane
SetClipPlane

User-defined clipping planes.

GetClipStatus
SetClipStatus

Clip status of rendered primitives.

GetCurrentTexturePalette
SetCurrentTexturePalette

Current texture palette index.

72 CHAPTER 3. DIRECT3D DEVICES

GetDepthStencilSurface
SetDepthStencilSurface

Depth surface interface

GetFVF
SetFVF

Flexible vertex format of vertices.

GetGammaRamp
SetGammaRamp

Gamma correction lookup table.

GetIndices
SetIndices

Current index buffer.

GetLight
SetLight

Light definitions.

GetLightEnable
LightEnable1

Light enabled flag.

GetMaterial
SetMaterial

Primitive material properties.

GetNPatchMode
SetNPatchMode

N-patch tessellation mode.

GetPaletteEntries
SetPaletteEntries

Texture palette entries.

GetPixelShader
SetPixelShader

Pixel shader program handle.

GetPixelShaderConstantB
SetPixelShaderConstantB

Boolean constant registers.

GetPixelShaderConstantF
SetPixelShaderConstantF

Floating-point constant registers.

GetPixelShaderConstantI
SetPixelShaderConstantI

Integer constant registers.

GetRenderState
SetRenderState

Pipeline control values.

GetRenderTarget
SetRenderTarget

Target surface for rendered pixels.

GetSamplerState
SetSamplerState

Texture sampler control values.

GetScissorRect
SetScissorRect

Scissor test rectangle.

GetSoftwareVertexProcessing
SetSoftwareVertexProcessing

Vertex processing control.

GetStreamSource
SetStreamSource

Source vertex data buffers.

GetStreamSourceFreq
SetStreamSourceFreq

Stream source sampling frequency.

GetTexture
SetTexture

Texture resources used by each stage.

GetTextureStageState
SetTextureStageState

Texture stage control values.

1This is a “set property” style method that isn’t prefixed with Set.

3.2. IDIRECT3DDEVICE9 73

GetTransform
SetTransform

Transformation matrices.

GetVertexDeclaration
SetVertexDeclaration

Vertex component declaration.

GetVertexShader
SetVertexShader

Vertex shader program.

GetVertexShaderConstantB
SetVertexShaderConstantB

Boolean constant registers.

GetVertexShaderConstantF
SetVertexShaderConstantF

Floating-point constant registers.

GetVertexShaderConstantI
SetVertexShaderConstantI

Integer constant registers.

GetViewport
SetViewport

Rendering viewport extent.

Methods
BeginScene Mark the start of a scene.
BeginStateBlock Mark device state for capture.
Clear Clears the current viewport on the de-

vice.
ColorFill Fills a rectangular area with a color.
CreateAdditionalSwapChain Create an additional swap chain on a

windowed device.
CreateCubeTexture Create a cube map texture sources.
CreateDepthStencilSurface Create a depth/stencil surface re-

source.
CreateIndexBuffer Create an index buffer resource.
CreateOffscreenPlainSurface Create an off-screen surface resource.
CreatePixelShader Create a pixel shader.
CreateQuery Create a device query.
CreateRenderTarget Create a render target resource.
CreateStateBlock Create a state block.
CreateTexture Create a texture resource.
CreateVertexBuffer Create a vertex buffer resource.
CreateVertexDeclaration Create a vertex declaration.
CreateVertexShader Create a vertex shader.
CreateVolumeTexture Create a volume texture resource.
DeletePatch Destroy a cached patch tesselation.
DrawIndexedPrimitive Draw indexed primitives from the cur-

rent streams.
DrawIndexedPrimitiveUP Draw indexed primitives from user

data.
DrawPrimitive Draw primitives from the current

streams.
DrawPrimitiveUP Draw primitives from user data.

74 CHAPTER 3. DIRECT3D DEVICES

DrawRectPatch Rectangular higher order surface
patch.

DrawTriPatch Triangular higher order surface patch.
EndScene Mark the end of a scene.
EndStateBlock Capture device state changes.
EvictManagedResources Flush managed resources from the de-

vice.
MultiplyTransform Post-multiply onto a device transfor-

mation matrix.
Present Presents a rendered image for display.
ProcessVertices Process vertices in software.
Reset Resets the device’s display character-

istics.
ShowCursor Displays or hides the cursor.
StretchRect Device memory blit with stretching.
TestCooperativeLevel Checks exclusive ownership of the de-

vice.
UpdateSurface System to device memory surface

transfer.
UpdateTexture System to device memory texture

transfer.
ValidateDevice Validate current device state.

Device Methods by Pipeline Section
Vertex Assembly BeginScene

CreateIndexBuffer
CreateVertexBuffer
DeletePatch
DrawIndexedPrimitive
DrawIndexedPrimitiveUP
DrawPrimitive
DrawPrimitiveUP
DrawRectPatch
DrawTriPatch
EndScene
SetIndices
SetNPatchMode
SetRenderState
SetStreamSource
SetStreamSourceFreq
SetVertexDeclaration

. . . continued

3.2. IDIRECT3DDEVICE9 75

Device Methods by Pipeline Section (continued)
Vertex Processing CreateVertexDeclaration

CreateVertexShader
LightEnable
MultiplyTransform
ProcessVertices
SetClipPlane
SetClipStatus
SetFVF
SetLight
SetMaterial
SetRenderState
SetSoftwareVertexProcessing
SetTransform
SetVertexShader
SetVertexShaderConstantB
SetVertexShaderConstantF
SetVertexShaderConstantI
SetViewport

Primitive Rasterization SetRenderState
Pixel Processing CreatePixelShader

MultiplyTransform
SetCurrentTexturePalette
SetPaletteEntries
SetPixelShader
SetPixelShaderConstantB
SetPixelShaderConstantF
SetPixelShaderConstantI
SetRenderState
SetSamplerState
SetTexture
SetTextureStageState
SetTransform

. . . continued

76 CHAPTER 3. DIRECT3D DEVICES

Device Methods by Pipeline Section (continued)
Frame Buffer Clear

ColorFill
CreateAdditionalSwapChain
CreateCubeTexture
CreateDepthStencilSurface
CreateOffscreenPlainSurface
CreateRenderTarget
CreateTexture
CreateVolumeTexture
EvictManagedResources
GetAvailableTextureMem
GetBackBuffer
GetFrontBufferData
GetNumberOfSwapChains
GetRenderTargetData
GetSwapChain
Reset
SetDepthStencilSurface
SetDialogBoxMode
SetRenderState
SetRenderTarget
SetScissorRect
SetViewport
StretchRect
UpdateSurface
UpdateTexture

Video Scan Out GetDisplayMode
GetRasterStatus
Present
SetCursorPosition
SetCursorProperties
SetGammaRamp
ShowCursor

Table 3.1: Device Methods by Pipeline Section

3.3 Capabilities

Advertising device capabilities is at the core of Direct3D’s philosophy for expos-
ing the device to an application. Direct3D doesn’t provide software emulation
for most of the features of the API. Rather than substitute a software implemen-
tation of a feature, Direct3D tells the application what features are supported
by the device and lets the application adapt to the capacity of the hardware.

3.3. CAPABILITIES 77

Table 3.2 shows device capabilities listed adjacent to their relevant pipeline
stages. As a feature is discussed we will mention its relevant elements from the
capabilities structure, but you may wish to familiarize yourself with the portions
of the pipeline and their capabilities now.

Some capabilities are allowed to vary slightly once the device has been cre-
ated. The GetDeviceCaps method on the device will return the capabilities
of an actual device, while the GetDeviceCaps method on the Direct3D object
returns the generic capabilities of a device.

HRESULT GetDeviceCaps(D3DCAPS9 *value);

typedef struct _D3DCAPS9
{

D3DDEVTYPE DeviceType;
UINT AdapterOrdinal;
DWORD Caps;
DWORD Caps2;
DWORD Caps3;
DWORD PresentationIntervals;
DWORD CursorCaps;
DWORD DevCaps;
DWORD PrimitiveMiscCaps;
DWORD RasterCaps;
DWORD ZCmpCaps;
DWORD SrcBlendCaps;
DWORD DestBlendCaps;
DWORD AlphaCmpCaps;
DWORD ShadeCaps;
DWORD TextureCaps;
DWORD TextureFilterCaps;
DWORD CubeTextureFilterCaps;
DWORD VolumeTextureFilterCaps;
DWORD TextureAddressCaps;
DWORD VolumeTextureAddressCaps;
DWORD LineCaps;
DWORD MaxTextureWidth;
DWORD MaxTextureHeight;
DWORD MaxVolumeExtent;
DWORD MaxTextureRepeat;
DWORD MaxTextureAspectRatio;
DWORD MaxAnisotropy;
float MaxVertexW;
float GuardBandLeft;
float GuardBandTop;
float GuardBandRight;
float GuardBandBottom;

78 CHAPTER 3. DIRECT3D DEVICES

float ExtentsAdjust;
DWORD StencilCaps;
DWORD FVFCaps;
DWORD TextureOpCaps;
DWORD MaxTextureBlendStages;
DWORD MaxSimultaneousTextures;
DWORD VertexProcessingCaps;
DWORD MaxActiveLights;
DWORD MaxUserClipPlanes;
DWORD MaxVertexBlendMatrices;
DWORD MaxVertexBlendMatrixIndex;
float MaxPointSize;
DWORD MaxPrimitiveCount;
DWORD MaxVertexIndex;
DWORD MaxStreams;
DWORD MaxStreamStride;
DWORD VertexShaderVersion;
DWORD MaxVertexShaderConst;
DWORD PixelShaderVersion;
float PixelShader1xMaxValue;
DWORD DevCaps2;
float MaxNpatchTessellationLevel;
DWORD Reserved5;
UINT MasterAdapterOrdinal;
UINT AdapterOrdinalInGroup;
UINT NumberOfAdaptersInGroup;
DWORD DeclTypes;
DWORD NumSimultaneousRTs;
DWORD StretchRectFilterCaps;
D3DVSHADERCAPS2_0 VS20Caps;
D3DPSHADERCAPS2_0 PS20Caps;
DWORD VertexTextureFilterCaps;
DWORD MaxVShaderInstructionsExecuted;
DWORD MaxPShaderInstructionsExecuted;
DWORD MaxVertexShader30InstructionSlots;
DWORD MaxPixelShader30InstructionSlots;

} D3DCAPS9;

Device Capabilities by Pipeline Section

Vertex Assembly Dev Caps:
Draw Prim TL Vertex
Quintic RT Patches
RT Patches
RT Patch Handle Zero
TL Vertex System Memory

. . . continued

3.3. CAPABILITIES 79

Device Capabilities by Pipeline Section (continued)

TL Vertex Video Memory
Dev Caps 2:

Adaptive Tess N Patch
Adaptive Tess RT Patch
D Map N Patch
Stream Offset
Vertex Elements Can Share Stream Offset

Decl Types
FVF Caps
Max Primitive Count
Max Streams
Max Stream Stride
Max Vertex Index
Max N Patch Tessellation Level

Vertex Processing Dev Caps:
HW Transform And Light
Pure Device

Max Active Lights
Max User Clip Planes
Max Vertex Blend Matrices
Max Vertex Blend Matrix Index
Max Vertex Shader 30 Instruction Slots
Max Vertex Shader Const
Max V Shader Instructions Executed
Primitive Misc Caps:

Clip Plane Scaled Points
Clip TL Verts
Fog Vertex Clamped

Raster Caps:
Fog Range
Fog Vertex

Vertex Processing Caps
Vertex Shader Version
Vertex Texture Filter Caps
VS 20 Caps

Primitive Processing Max User Clip Planes
Primitive Misc Caps:

Clip Plane Scaled Points
Clip TL Verts
Cull CW
Cull CCW
Cull None

Primitive Rasterization Dev Caps:
HW Rasterization
Pure Hardware

Extents Adjust
Guard Band Left
Guard Band Top

. . . continued

80 CHAPTER 3. DIRECT3D DEVICES

Device Capabilities by Pipeline Section (continued)

Guard Band Right
Guard Band Bottom
Line Caps:

Antialias
Texture

Max Point Size
Max Vertex W
Raster Caps:

Color Perspective
Shade Caps
Texture Caps:

Projected

Pixel Processing Caps 2:
Can Auto Gen Mipmap

Cube Texture Filter Caps
Dev Caps:

Separate Texture Memories
Texture Non Local Vid Mem
Texture System Memory
Texture Video Memory

Max Anisotropy
Max Pixel Shader 30 Instruction Slots
Max P Shader Instructions Executed
Max Simultaneous Textures
Max Texture Aspect Ratio
Max Texture Blend Stages
Max Texture Height
Max Texture Repeat
Max Texture Width
Max Volume Extent
Pixel Shader Version
Pixel Shader 1x Max Value
Primitive Misc Caps:

Per Stage Constant
TSS Arg Temp

PS 20 Caps
Raster Caps:

Anisotropy
Mipmap LOD Bias

Texture Address Caps
Texture Caps
Texture Filter Caps
Texture Op Caps
Volume Texture Filter Caps

Frame Buffer Alpha Cmp Caps
Caps 3:

Alpha Fullscreen Flip Or Discard
Copy To System Mem

. . . continued

3.3. CAPABILITIES 81

Device Capabilities by Pipeline Section (continued)

Copy To Vid Mem
Dest Blend Caps
Line Caps:

Alpha Cmp
Blend
Fog
Z Test

Num Simultaneous RTs
Primitive Misc Caps:

Blend Op
Color Write Enable
Independent Write Masks
Mask Z
MRT Independent Bit Depths
MRT Post Pixel Shader Blending
Separate Alpha Blend

Raster Caps:
Dither
Fog Table
Multisample Toggle
Scissor Test
W Buffer
W Fog
Z Bufferless HSR
Z Fog
Z Test

Src Blend Caps
Stencil Caps
Stretch Rect Filter Caps
Z Cmp Caps

Video Scan Out Adapter Ordinal In Group
Caps:

Read Scan Line
Caps 2:

Can Calibrate Gamma
Full Screen Gamma

Caps 3:
Linear To sRGB Presentation

Cursor Caps
Dev Caps:

Can Render After Flip
Master Adapter Ordinal
Number Of Adapters In Group
Presentation Intervals

Table 3.2: Device capabilities organized by pipeline section. D3DCAPS9 member names
are written as word phrases and bit flag names are written without their prefix in
mixed case, indented beneath the containing structure member.

82 CHAPTER 3. DIRECT3D DEVICES

IUnknown

IDirect3DVolume9

IDirect3DResource9

IDirect3DIndexBuffer9

IDirect3DVertexBuffer9

IDirect3DSurface9

IDirect3DBaseTexture9

IDirect3DTexture9

IDirect3DCubeTexture9

IDirect3DVolumeTexture9

-

-

-

Figure 3.1: Resource interface hierarchy as a tree view; subtrees denote deriva-
tion. All COM interfaces derive from IUnknown.

3.4 Resources

The device works together with resource objects to perform scene rendering.
Resource objects are used as containers for the scene data rendered by the
device such as primitive vertices, indices into vertex arrays, surface textures
and volumes. The resource interface hierarchy is shown in figure 3.1

Two and three dimensional textures expose their contents as collections of
surfaces and volumes, respectively. The back buffer, depth/stencil buffer and
render target properties of the device are also exposed as surfaces. Volume ob-
jects do not inherit from IDirect3DResource9 and therefore do not participate
in the resource management exposed by this interface.

The remaining resource objects all inherit from IDirect3DResource9. Addi-
tionally, all the texture resources inherit from IDirect3DBaseTexture9, covered
in chapter 11.

3.5 IDirect3DResource9

IDirect3DResource9 is the base interface for all resource objects and exposes
resource memory management features for managed resources. The interface is
summarized in interface 3.2. Managing a resource governs when the resource is
promoted from system memory to memory accessible by the device and when
the resource is discarded from device memory. Only resources created in D3D-
POOL MANAGED are managed.

Managed resources are assigned an unsigned integer priority, with higher
priority taking precedence so that resources with a lower priority are discarded
from device memory first. Non-managed resources always return a priority of
zero. Within the same priority, Direct3D uses a least-recently used strategy to
discard “old” resources in preference to newly created resources. When the ap-
plication attempts to use more resources than the card can hold while rendering

3.5. IDIRECT3DRESOURCE9 83

a scene, Direct3D switches to a most-recently used first strategy for discard-
ing resources. This helps prevent thrashing of resources in and out of device
memory.

An application can explicitly cause the resource manager to discard memory
consumed by managed resources with EvictManagedResources. The released
device memory will not necessarily be contiguous. Allocating an object may
still fail due insufficient memory even though the resource manager freed enough
total space.

HRESULT EvictManagedResources();

Resources in D3DPOOL DEFAULT are not managed and are never discarded
from device memory by the resource manager. An application can perform its
own resource management by creating resources in the default pool only and
manually allocating, copying and releasing resources from the device memory.
It is recommended that you use Direct3D’s resource management until you have
measured a bottleneck to be located within the resource management.

Because resources in the default pool are not discarded, the best results from
Direct3D’s resource management algorithms will be obtained if the application
creates all resources in D3DPOOL DEFAULT before resources in D3DPOOL MANAGED.
If you need to allocate new resources in the default pool after managed resources
have been loaded, you should evict all managed resources before allocating new
resources in the default pool.

Resources in pool D3DPOOL SYSTEMMEM are never located in device memory,
so they do not participate in resource management. However, resources in D3D-
POOL SYSTEMMEM and D3DPOOL MANAGED contribute to the paging load of the
application since they reside in the memory space of the application’s process.

When loading textures into a device, GetAvailableTextureMem can be called
to obtain an estimate of the available texture memory. This estimate can be
used to adjust the detail of texture resources used by the application. However,
its best to use this value only as a rough guideline and not as an exact measure-
ment; the runtime can manage device memory and it is generally best to leave
it to the runtime. See chapter 11 for more on texture resources.

UINT GetAvailableTextureMem();

Interface 3.2: Summary of the IDirect3DResource9 interface.

IDirect3DResource9

Read-Only Properties
GetDevice The owning device.
GetType The resource type.

Properties

84 CHAPTER 3. DIRECT3D DEVICES

GetPriority
SetPriority

Management priority of the resource.

GetPrivateData
SetPrivateData

Private data associated with the resource.

Methods
FreePrivateData Frees associated private data memory.
PreLoad Forces a managed resource into device memory.

interface IDirect3DResource9 : IUnknown
{
//--
// read-only properties

HRESULT GetDevice(IDirect3DDevice9 **value);
D3DRESOURCETYPE GetType();

//--
// read/write properties

DWORD GetPriority();
DWORD SetPriority(DWORD value);

HRESULT GetPrivateData(REFGUID data_guid,
void *value,
DWORD *size);

HRESULT SetPrivateData(REFGUID data_guid,
const void *value,
DWORD size,
DWORD flags);

//--
// methods

HRESULT FreePrivateData(REFGUID data_guid);
void PreLoad();

};

The GetDevice method returns the device with which this resource is asso-
ciated. Resources cannot be shared across devices. The type of the resource is
returned by GetType and can be used to call QueryInterface with the appro-
priate IID to obtain a more specialized interface for the resource.

For instance, the following function returns the IDirect3DTexture9 inter-
face associated with a texture resource or NULL otherwise. It is the caller’s
responsibility to call Release on the returned interface when finished. This is
one of the few times you will call QueryInterface on a Direct3D object. Here
we are using QueryInterface to perform a type-safe “downcast” from the base
class IDirect3DResource9 to the derived class IDirect3DTexture9.

3.5. IDIRECT3DRESOURCE9 85

IDirect3DTexture9 *
resource_texture(IDirect3DResource9 *resource)
{

if (D3DRTYPE_TEXTURE != resource->GetType())
{

return NULL;
}

IDirect3DTexture9 *texture = NULL;
THR(resource->

QueryInterface(IID_IDirect3DTexture9, &texture));
return texture;

}

GetPrivateData and SetPrivateData allow an application to associate its
own arbitrary chunks of data with any Direct3D resource.2 Each distinct item
of private data is identified by a GUID. You can generate GUIDs for data items
used by your application by a tool such as GUIDGEN.EXE in the Platform SDK.

Private data is passed by value to the device. When private data is set on
a device, the data is copied from the supplied pointer into a block of memory
allocated by the device. When private data is gotten from a device, the data is
copied from the device’s block of memory into the block supplied by the caller.

All private data associated with a resource is freed when the associated
resource itself is freed. If private data is already set for a particular GUID and
data is set on that GUID again, the existing private data is freed before the
new private data is copied into a newly allocated block. You can explicitly free
private data with the FreePrivateData method.

When the private data is an interface pointer, IDirect3DResource9 can
be instructed to manage the interface pointer appropriately by passing D3D-
SPD IUNKNOWN for the flags argument of SetPrivateData. After the interface
pointer is copied into the device, the device calls AddRef on it. Before the
interface pointer is freed, Release is called on it. Adding a reference to the
supplied interface ensures that the interface pointer remains valid for the lifetime
of the private data.

#define D3DSPD_IUNKNOWN 0x00000001L

Like many Win32 functions, GetPrivateData returns the data as a sized
block of memory. You first call the function with a NULL data pointer to obtain
the size of the block, allocate a block big enough, and then call the function
again with the pointer to the block of memory. In this example, a std::vector
is used to obtain the storage. You can avoid the first step if you previously set
the private data on the resource and you already know its size.

2IDirect3DSurface9, although it does not derive from IDirect3DResource9 has identical
methods for private data.

86 CHAPTER 3. DIRECT3D DEVICES

// get buffer size
DWORD size = 0;
THR(resource->GetPrivateData(data_id, NULL, &size));
// allocate buffer
std::vector<BYTE> data(size);
// fill buffer contents
THR(resource->GetPrivateData(data_id, &data[0], &size));

3.6 Destroying a Device

When an application is finished with a device, the device can be released by
calling the Release from IUnknown. This decrements the reference count on
the device object. When no outstanding references exist to a COM object, it
can be safely destroyed and its memory released.

Methods and functions in Direct3D that create COM objects, such as Create-
Device, add a reference to the object for the caller before they return the in-
terface pointer. The application must release these objects when they are no
longer needed to avoid a memory leak.

3.7 Miscellaneous Properties

A few device properties are not directly associated with any particular portion of
the pipeline and describe the device in general. The GetCreationParameters
method returns the parameters used to create the device in a D3DDEVICE -
CREATION PARAMETERS structure.

HRESULT GetCreationParameters(
D3DDEVICE_CREATION_PARAMETERS *value);

HRESULT GetDirect3D(IDirect3D9 **value);

typedef struct _D3DDEVICE_CREATION_PARAMETERS
{

UINT AdapterOrdinal;
D3DDEVTYPE DeviceType;
HWND hFocusWindow;
DWORD BehaviorFlags;

} D3DDEVICE_CREATION_PARAMETERS;

The instance of IDirect3D9 that created the device can be obtained with
the GetDirect3D method. You may need this to re-enumerate display modes
on the adapter if you didn’t cache this information.

3.8. DEVICE QUERIES 87

3.8 Device Queries

Device queries allow you to obtain information from the driver layer of the
device. The two main uses for driver queries are for obtaining rendering statistics
and event notifications from the device. A query is represented as a COM object.
As long as the query object and its associated device exist you can issue the
query to the device to obtain fresh information. To create a query call the
CreateQuery method with an enumeration identifying the type of information
you wish to query.

typedef enum _D3DQUERYTYPE {
D3DQUERYTYPE_BANDWIDTHTIMINGS = 17,
D3DQUERYTYPE_CACHEUTILIZATION = 18,
D3DQUERYTYPE_EVENT = 8,
D3DQUERYTYPE_INTERFACETIMINGS = 14,
D3DQUERYTYPE_OCCLUSION = 9,
D3DQUERYTYPE_PIPELINETIMINGS = 13,
D3DQUERYTYPE_PIXELTIMINGS = 16,
D3DQUERYTYPE_RESOURCEMANAGER = 5,
D3DQUERYTYPE_TIMESTAMP = 10,
D3DQUERYTYPE_TIMESTAMPDISJOINT = 11,
D3DQUERYTYPE_TIMESTAMPFREQ = 12,
D3DQUERYTYPE_VCACHE = 4,
D3DQUERYTYPE_VERTEXSTATS = 6,
D3DQUERYTYPE_VERTEXTIMINGS = 15

} D3DQUERYTYPE;

HRESULT CreateQuery(D3DQUERYTYPE kind, IDirect3DQuery9 **result);

The D3DQUERYTYPE enumeration gives the possible kinds of queries: vertex
cache description queries, resource manager statistics queries, vertex statistics
queries, event queries, occlusion queries, timestamp queries, timing queries and
cache utilization queries. The methods of the query interface are summarized
in interface 3.3.

Interface 3.3: Summary of the IDirect3DQuery9 interface.

IDirect3DQuery9

Read-Only Properties
GetData The query result data.
GetDataSize The size of the query result data.
GetDevice The associated device.
GetType The query type.

Methods
Issue Issues a query to the device.

88 CHAPTER 3. DIRECT3D DEVICES

Building

IssuedSignaled -¾

@
@

@
@

@
@R@
@

@
@

@
@I¡

¡
¡

¡
¡

¡ª¡
¡

¡
¡

¡
¡µ

Figure 3.2: A query object transits between Building, Issued and Signaled states
through calls to the Issue method by the application or by the device driver.

interface IDirect3DQuery9 : IUnknown
{
//--
// read-only properties

HRESULT GetDevice(IDirect3DDevice9 **value);
D3DQUERYTYPE GetType();

HRESULT GetData(void *data, DWORD size, DWORD flags);
DWORD GetDataSize();

//--
// methods

HRESULT Issue(DWORD flags);
};

A query exists in one of three states: signaled, building, or issued. The tran-
sitions between these states are shown in figure 3.2. The Issue method is used
by the application to signal a state transition on the query. The device driver
can also change the state of a query when it has returned the data requested
by the query. Queries are sent to the device in the rendering command stream
and the results are available after all the geometry before the query has been
processed. The flags argument to Issue is used to signal the beginning or end
of a query.

#define D3DISSUE_END (1 << 0)
#define D3DISSUE_BEGIN (1 << 1)

The query will report the results for primitives issued between the beginning
of the query and the end of the query. Vertex cache, resource manager statistics
and event queries have an implicit beginning and the application issues the end
of the query. The implicit beginnings of queries are listed in table 3.3. The
statistics queries return data collected since the last call to Present, while the
event and vertex cache queries return data since the creation of the device.

3.8. DEVICE QUERIES 89

Query Type Beginning
Vertex Cache CreateDevice
Resource Manager Statistics Present
Vertex Statistics Present
Event CreateDevice

Table 3.3: Implicit Query Beginnings

Query Type Data Type
Bandwidth Timings D3DDEVINFO D3D9BANDWIDTHTIMINGS
Cache Utilization D3DDEVINFO D3D9CACHEUTILIZATION
Event BOOL
Interface Timings D3DDEVINFO D3D9INTERFACETIMINGS
Occlusion DWORD
Pipeline Timings D3DDEVINFO D3D9PIPELINETIMINGS
Pixel Shader Timings D3DDEVINFO D3D9STAGETIMINGS
Resource Manager Statistics D3DDEVINFO RESOURCEMANAGER
Timestamp UINT64
Timestamp Disjoint BOOL
Timestamp Frequency UINT64
Vertex Cache D3DDEVINFO VCACHE
Vertex Shader Timings D3DDEVINFO D3D9STAGETIMINGS
Vertex Statistics D3DDEVINFO D3DVERTEXSTATS

Table 3.4: Query Data Types

For occlusion, disjoint timestamp and timing queries, the application explicitly
specifies the beginning and end of the query.

To get the results of a query, call its GetDataSize and GetData methods to
obtain a copy of the query data. All queries return data and expect a suitably
sized data structure to be passed to GetData. The data types of the query data
are given in table 3.4. The size argument should match the size of the data
structure, in bytes.

GetData returns S OK when data is available and S FALSE when the query
data is not yet available. Both of these values are HRESULT values indicating
success. A lost device cannot return query data and GetData returns D3DERR -
DEVICELOST.

The flags argument to GetData lets you synchronously flush the command
queue to the device.

#define D3DGETDATA_FLUSH (1 << 0)

The event query can be used to inform the application when a particular
point in the command stream has been processed by the driver. The query data
is a boolean indicating if the location of the event query in the command stream
has been processed.

90 CHAPTER 3. DIRECT3D DEVICES

Occlusion queries return the number of pixels that passed the depth test for
primitives rendered between the begin and end of the query. A value of zero
indicates that the group of primitives is completely obscured from the camera by
foreground primitives. An application can use this information to cull occluded
objects from the scene.

You can probe a device for query support by attempting to create a query
object with a NULL pointer for the result. CreateQuery will fail if the query
is not supported and will succeed if the query is supported. In addition, the
vertex statistics and resource manager queries are only supported with the debug
developer runtime and are not supported with the retail runtime.

3.8.1 Resource Manager Statistics Queries

The resource manager statistics query returns a D3DDEVINFO RESOURCEMANAGER
structure, which contains an array of D3DRESOURCESTATS structures, one for
each resource type. There are D3DRTYPECOUNT resource types.

#define D3DRTYPECOUNT (D3DRTYPE_INDEXBUFFER+1)

typedef struct _D3DDEVINFO_RESOURCEMANAGER
{

D3DRESOURCESTATS stats[D3DRTYPECOUNT];
} D3DDEVINFO_RESOURCEMANAGER;

The D3DRESOURCESTATS structure has statistics since the last call to Present
on the device, as well as statistics kept since the device was last Reset. The
statistics for each resource indicate the performance of the resource in D3DPOOL -
MANAGED. Resources in other memory pools are not reported in these statistics.

typedef struct _D3DRESOURCESTATS
{

// Data collected since last Present()
BOOL bThrashing;
DWORD ApproxBytesDownloaded;
DWORD NumEvicts;
DWORD NumVidCreates;
DWORD LastPri;
DWORD NumUsed;
DWORD NumUsedInVidMem;

// Persistent data
DWORD WorkingSet;
DWORD WorkingSetBytes;
DWORD TotalManaged;
DWORD TotalBytes;

} D3DRESOURCESTATS;

3.8. DEVICE QUERIES 91

The persistent data describes the device memory working set and some total
statistics. The WorkingSet member is the number of resource objects in video
memory and WorkingSetBytes is the size of the working set. The TotalManaged
member gives the number of managed resource objects and TotalBytes are their
total size.

The frame related data describes the behavior of the resource manager for the
last frame. The bThrashing member is set if the resource manager is “thrash-
ing”. Thrashing occurs when the resource manager is constantly streaming
resources into video memory. For instance, suppose you have a large number
of objects in the scene, each using one of a set of textures. If the objects are
drawn sorted by texture, then it is more likely that the necessary textures will
be already loaded in device memory. If the objects are drawn without regard to
texture, then the resource manager may spend lots of time thrashing back and
forth between different textures in the working set.

The ApproxBytesDownloaded, NumEvicts and NumVidCreates members de-
scribe the resource consumption behavior of the resource manager since the last
call to Present. The LastPri member gives the priority of the last object that
was evicted from device memory. The NumUsed and NumUsedInVidMem describe
how many resource objects were set on the device and how many were already
present in device memory, respectively.

3.8.2 Vertex Statistics Queries

Statistics on vertex processing since the last call to Present are also reported
by the device. The total number of triangles drawn since the last Present and
the number of additional triangles introduced through clipping are reported in
the D3DDEVINFO D3DVERTEXSTATS structure.

typedef struct _D3DDEVINFO_D3DVERTEXSTATS
{

DWORD NumRenderedTriangles;
DWORD NumExtraClippingTriangles;

} D3DDEVINFO_D3DVERTEXSTATS;

3.8.3 Vertex Cache Queries

The vertex cache query returns information about the size of the hardware
vertex cache on the device. The vertex cache is a memory cache close to the
GPU that avoids accesses to vertex memory for a small number of recently used
vertices. The query returns a D3DDEVINFO VCACHE structure.

typedef struct _D3DDEVINFO_VCACHE {
DWORD Pattern;
DWORD OptMethod;
DWORD CacheSize;
DWORD MagicNumber;

} D3DDEVINFO_VCACHE, *LPD3DDEVINFO_VCACHE;

92 CHAPTER 3. DIRECT3D DEVICES

The Pattern member must be the four-character code CACH. When the Opt-
Method member is zero, applications should use the longest possible triangle
strips to maximize vertex cache coherence. Otherwise, the value is one to in-
dicate that applications should optimize for a vertex cache with CacheSize
entries. The MagicNumber member determines when to restart triangle strips
when the OptMethod member is one.

3.8.4 PIX Related Queries

PIX is a performance measurement tool for DirectX applications. The remaining
query types return data for performance measurements with tools like PIX. A
driver may not support all of these queries, or all the members within the
structure returned by a particular query. If the values returned are zero, you
should ignore the measurement.

The cache utilization query returns the cache hit rate for the texel cache and
the vertex cache.

typedef struct _D3DDEVINFO_D3D9CACHEUTILIZATION
{

float TextureCacheHitRate;
float PostTransformVertexCacheHitRate;

} D3DDEVINFO_D3D9CACHEUTILIZATION;

All of the timing queries return information indicating the portion of the
query time spent in various portions of the pipeline. The measurements reflect
the percentages between the time of the beginning and end of the query.

typedef struct _D3DDEVINFO_D3D9BANDWIDTHTIMINGS
{

float MaxBandwidthUtilized;
float FrontEndUploadMemoryUtilizedPercent;
float VertexRateUtilizedPercent;
float TriangleSetupRateUtilizedPercent;
float FillRateUtilizedPercent;

} D3DDEVINFO_D3D9BANDWIDTHTIMINGS;

typedef struct _D3DDEVINFO_D3D9INTERFACETIMINGS
{

float WaitingForGPUToUseApplicationResourceTimePercent;
float WaitingForGPUToAcceptMoreCommandsTimePercent;
float WaitingForGPUToStayWithinLatencyTimePercent;
float WaitingForGPUExclusiveResourceTimePercent;
float WaitingForGPUOtherTimePercent;

} D3DDEVINFO_D3D9INTERFACETIMINGS;

3.9. DEVICE STATES 93

typedef struct _D3DDEVINFO_D3D9PIPELINETIMINGS
{

float VertexProcessingTimePercent;
float PixelProcessingTimePercent;
float OtherGPUProcessingTimePercent;
float GPUIdleTimePercent;

} D3DDEVINFO_D3D9PIPELINETIMINGS;

The vertex shader timing and pixel shader timing queries both return the
information in the D3DDEVINFO D3D9STAGETIMINGS structure.

typedef struct _D3DDEVINFO_D3D9STAGETIMINGS
{

float MemoryProcessingPercent;
float ComputationProcessingPercent;

} D3DDEVINFO_D3D9STAGETIMINGS;

3.9 Device States

The device object’s properties control the behavior of the rendering pipeline
while its methods supply data for the pipeline to render. The render, sampler
and texture stage state properties of the device control many aspects of the
pipeline’s behavior and are summarized by pipeline section in table 3.5.

Device States by Pipeline Section
Vertex RS Patch Edge Style RS Adaptive Tess X, Y, Z, W
Assembly RS Position Degree RS Enable Adaptive Tessellation

RS Normal Degree RS Max Tessellation Level
RS Color Vertex RS Min Tessellation LEvel
RS Point Size SS D Map Offset

Vertex RS Tween Factor RS Clipping
Processing RS Vertex Blend RS Indexed Vertex Blend Enable

TSS Tex Coord Index RS Ambient Material Source
RS Fog Vertex Mode RS Diffuse Material Source
RS Range Fog Enable RS Specular Material Source
RS Ambient RS Emissive Material Source
RS Local Viewer RS Lighting
RS Specular Enable RS Normalize Normals
RS Shade Mode TSS Texture Transform Flags
RS Cull Mode RS Clip Plane Enable

Pixel SS Border Color
Processing RS Fill Mode SS Mag Filter

RS Last Pixel SS Min Filter
SS Mip Filter

RS Specular Enable SS Mip Map LOD Bias
. . . continued

94 CHAPTER 3. DIRECT3D DEVICES

Device States by Pipeline Section (continued)
RS Texture Factor SS Max Mip Level
RS Wrap 0− 15 SS Max Anisotropy
TSS Tex Coord Index TSS Texture Transform Flags
SS Address U, V, W TSS Color Arg 0− 2
TSS Color Op TSS Constant
TSS Alpha Arg 0− 2 RS Fog Table Mode
TSS Alpha Op RS Fog Density
TSS Result Arg RS Fog End
TSS Bump Env Mat 00− 11 RS Fog Start
TSS Bump Env L Scale RS Fog Color
TSS Bump Env L Offset RS Fog Enable
RS Depth Bias RS Slope Scale Depth Bias
SS sRGB Texture RS Antialiased Line Enable

Frame RS Alpha Ref RS Alpha Test Enable
Buffer RS Alpha Func RS Z Enable

RS Z Func
RS Stencil Enable RS Stencil Func
RS Stencil Ref RS Stencil Mask
RS Stencil Fail RS Stencil Z Fail
RS Stencil Pass RS Alpha Blend Enable
RS Src Blend RS Dest Blend
RS Blend Op RS Dither Enable
RS Color Write Enable RS Stencil Write Mask
RS Z Write Enable RS Multi Sample Antialias
RS Multi Sample Mask RS Scissor Test Enable
RS Src Blend Alpha RS Separate Alpha Blend Enable
RS Dest Blend Alpha RS Blend Op Alpha
RS Blend Factor RS CCW Stencil Fail
RS CCW Stencil Z Fail RS CCW Stencil Pass
RS sRGB Write Enable RS CCW Stencil Func
SS Element Index RS Color Write Enable 1− 3

RS Two Sided Stencil Mode

Table 3.5: Render and texture stage states organized by pipeline section. “RS”,
“SS” and “TSS” denote render, sampler and texture stage states. There are no
states that affect video scan out.

Render states, sampler states and texture stage states are 32-bit quanti-
ties having a name and a value. The names are given by the D3DRENDER-
STATETYPE, D3DSAMPLERSTATETYPE and D3DTEXTURESTAGESTATETYPE enumera-
tions. These properties are manipulated through the GetRenderState, Set-
RenderState, GetSamplerState, SetSamplerState, GetTextureStageState,

3.9. DEVICE STATES 95

and SetTextureStageState methods. The details of sampler and texture stage
states are discussed in chapter 11. The details of individual render states are
discussed throughout the book for each section of the pipeline.

HRESULT GetRenderState(D3DRENDERSTATETYPE kind,
DWORD *value);

HRESULT SetRenderState(D3DRENDERSTATETYPE kind,
DWORD value);

HRESULT GetSamplerState(DWORD stage,
D3DSAMPLERSTATETYPE kind,
DWORD *value);

HRESULT SetSamplerState(DWORD stage,
D3DSAMPLERSTATETYPE kind,
DWORD value);

HRESULT GetTextureStageState(DWORD stage,
D3DTEXTURESTAGESTATETYPE kind,
DWORD *value);

HRESULT SetTextureStageState(DWORD stage,
D3DTEXTURESTAGESTATETYPE kind,
DWORD value);

typedef enum _D3DRENDERSTATETYPE {
D3DRS_ALPHABLENDENABLE = 27,
D3DRS_ALPHAFUNC = 25,
D3DRS_ALPHAREF = 24,
D3DRS_ALPHATESTENABLE = 15,
D3DRS_AMBIENT = 139,
D3DRS_AMBIENTMATERIALSOURCE = 147,
D3DRS_BLENDOP = 171,
D3DRS_CLIPPING = 136,
D3DRS_CLIPPLANEENABLE = 152,
D3DRS_COLORWRITEENABLE = 168,
D3DRS_COLORVERTEX = 141,
D3DRS_CULLMODE = 22,
D3DRS_DEBUGMONITORTOKEN = 165,
D3DRS_DESTBLEND = 20,
D3DRS_DIFFUSEMATERIALSOURCE = 145,
D3DRS_DITHERENABLE = 26,
D3DRS_EDGEANTIALIAS = 40,
D3DRS_EMISSIVEMATERIALSOURCE = 148,
D3DRS_FILLMODE = 8,
D3DRS_FOGCOLOR = 34,
D3DRS_FOGDENSITY = 38,
D3DRS_FOGENABLE = 28,
D3DRS_FOGEND = 37,
D3DRS_FOGSTART = 36,

96 CHAPTER 3. DIRECT3D DEVICES

D3DRS_FOGTABLEMODE = 35,
D3DRS_FOGVERTEXMODE = 140,
D3DRS_INDEXEDVERTEXBLENDENABLE = 167,
D3DRS_LASTPIXEL = 16,
D3DRS_LIGHTING = 137,
D3DRS_LINEPATTERN = 10,
D3DRS_LOCALVIEWER = 142,
D3DRS_NORMALIZENORMALS = 143,
D3DRS_MULTISAMPLEANTIALIAS = 161,
D3DRS_MULTISAMPLEMASK = 162,
D3DRS_NORMALORDER = 173,
D3DRS_PATCHEDGESTYLE = 163,
D3DRS_PATCHSEGMENTS = 164,
D3DRS_POINTSCALE_A = 158,
D3DRS_POINTSCALE_B = 159,
D3DRS_POINTSCALE_C = 160,
D3DRS_POINTSCALEENABLE = 157,
D3DRS_POINTSIZE = 154,
D3DRS_POINTSIZE_MAX = 166,
D3DRS_POINTSIZE_MIN = 155,
D3DRS_POINTSPRITEENABLE = 156,
D3DRS_POSITIONORDER = 172,
D3DRS_RANGEFOGENABLE = 48,
D3DRS_SHADEMODE = 9,
D3DRS_SOFTWAREVERTEXPROCESSING = 153,
D3DRS_SPECULARENABLE = 29,
D3DRS_SPECULARMATERIALSOURCE = 146,
D3DRS_SRCBLEND = 19,
D3DRS_STENCILENABLE = 52,
D3DRS_STENCILFAIL = 53,
D3DRS_STENCILFUNC = 56,
D3DRS_STENCILMASK = 58,
D3DRS_STENCILPASS = 55,
D3DRS_STENCILREF = 57,
D3DRS_STENCILWRITEMASK = 59,
D3DRS_STENCILZFAIL = 54,
D3DRS_TEXTUREFACTOR = 60,
D3DRS_TWEENFACTOR = 170,
D3DRS_VERTEXBLEND = 151,
D3DRS_WRAP0 = 128,
D3DRS_WRAP1 = 129,
D3DRS_WRAP2 = 130,
D3DRS_WRAP3 = 131,
D3DRS_WRAP4 = 132,
D3DRS_WRAP5 = 133,
D3DRS_WRAP6 = 134,

3.9. DEVICE STATES 97

D3DRS_WRAP7 = 135,
D3DRS_ZBIAS = 47,
D3DRS_ZENABLE = 7,
D3DRS_ZFUNC = 23,
D3DRS_ZVISIBLE = 30,
D3DRS_ZWRITEENABLE = 14

} D3DRENDERSTATETYPE;

%
typedef enum _D3DSAMPLERSTATETYPE
{

D3DSAMP_ADDRESSU = 1,
D3DSAMP_ADDRESSV = 2,
D3DSAMP_ADDRESSW = 3,
D3DSAMP_BORDERCOLOR = 4,
D3DSAMP_DMAPOFFSET = 13,
D3DSAMP_ELEMENTINDEX = 12,
D3DSAMP_MAGFILTER = 5,
D3DSAMP_MAXANISOTROPY = 10,
D3DSAMP_MAXMIPLEVEL = 9,
D3DSAMP_MINFILTER = 6,
D3DSAMP_MIPFILTER = 7,
D3DSAMP_MIPMAPLODBIAS = 8,
D3DSAMP_SRGBTEXTURE = 11

} D3DSAMPLERSTATETYPE;

typedef enum _D3DTEXTURESTAGESTATETYPE
{

D3DTSS_ADDRESSU = 13,
D3DTSS_ADDRESSV = 14,
D3DTSS_ADDRESSW = 25,
D3DTSS_ALPHAARG0 = 27,
D3DTSS_ALPHAARG1 = 5,
D3DTSS_ALPHAARG2 = 6,
D3DTSS_ALPHAOP = 4,
D3DTSS_BORDERCOLOR = 15,
D3DTSS_BUMPENVLOFFSET = 23,
D3DTSS_BUMPENVLSCALE = 22,
D3DTSS_BUMPENVMAT00 = 7,
D3DTSS_BUMPENVMAT01 = 8,
D3DTSS_BUMPENVMAT10 = 9,
D3DTSS_BUMPENVMAT11 = 10,
D3DTSS_COLORARG0 = 26,
D3DTSS_COLORARG1 = 2,
D3DTSS_COLORARG2 = 3,

98 CHAPTER 3. DIRECT3D DEVICES

D3DTSS_COLOROP = 1,
D3DTSS_MAGFILTER = 16,
D3DTSS_MAXANISOTROPY = 21,
D3DTSS_MAXMIPLEVEL = 20,
D3DTSS_MINFILTER = 17,
D3DTSS_MIPFILTER = 18,
D3DTSS_MIPMAPLODBIAS = 19,
D3DTSS_RESULTARG = 28,
D3DTSS_TEXCOORDINDEX = 11,
D3DTSS_TEXTURETRANSFORMFLAGS = 24

} D3DTEXTURESTAGESTATETYPE;

All state values are 32-bit sized quantities and the API treats these quan-
tities as DWORDs. However, each render, sampler or texture stage state is asso-
ciated with a 32-bit datatype that is not necessarily a DWORD. The data type
associated with the device render and texture stage states are summarized in
table 3.6. Most of these types are enumeration values, but some of the state
values are floating-point parameters. Since Direct3D uses IEEE single-precision
floating-point values, they are also 32-bit quantities, but the property meth-
ods take DWORD parameters and the floating-point values must be converted.
The technique used is to reinterpret the 32-bit memory pattern as needed with
reinterpret cast. The functions float dword and dword float in listing 3.1
show how to reinterpret the bit patterns.

Device State Data Types
Device State Data Type
RS Adaptive Tess X, Y, Z, W float
RS Alpha Blend Enable BOOL1

RS Alpha Func D3DCMPFUNC
RS Alpha Ref [0, 255]
RS Alpha Test Enable BOOL
RS Ambient D3DCOLOR
RS Ambient Material Source D3DMATERIALCOLORSOURCE
RS Antialiased Line Enable BOOL
RS Blend Factor float
RS Blend Op D3DBLENDOP
RS Blend Op Alpha D3DBLENDOP
RS CCW Stencil Fail D3DSTENCILOP
RS CCW Stencil Func D3DCMPFUNC
RS CCW Stencil Pass D3DSTENCILOP
RS CCW Stencil Z Fail D3DSTENCILOP
RS Clipping BOOL
RS Clip Plane Enable BOOL
RS Color Write Enable D3DCOLORWRITEENABLE
RS Color Write Enable 1− 3 D3DCOLORWRITEENABLE
RS Color Vertex BOOL

. . . continued

3.9. DEVICE STATES 99

Device State Data Types (continued)
Device State Data Type
RS Cull Mode D3DCULL
RS Debug Monitor Token D3DDEBUGMONITORTOKENS
RS Depth Bias float
RS Dest Blend D3DBLEND
RS Dest Blend Alpha D3DBLEND
RS Diffuse Material Source D3DMATERIALCOLORSOURCE
RS Dither Enable BOOL
RS Emissive Material Source D3DMATERIALCOLORSOURCE
RS Enable Adaptive Tessellation BOOL
RS Fill Mode D3DFILLMODE
RS Fog Color D3DCOLOR
RS Fog Density float
RS Fog Enable BOOL
RS Fog End float
RS Fog Start float
RS Fog Table Mode D3DFOGMODE
RS Fog Vertex Mode D3DFOGMODE
RS Indexed Vertex Blend Enable BOOL
RS Last Pixel BOOL
RS Lighting BOOL
RS Local Viewer BOOL
RS Max Tessellation Level DWORD
RS Min Tessellation LEvel DWORD
RS Normal Degree D3DDEGREETYPE
RS Normalize Normals BOOL
RS Multi Sample Antialias BOOL
RS Multi Sample Mask [0, 2m − 1]
RS Normal Degree D3DDEGREETYPE
RS Patch Edge Style D3DPATCHEDGESTYLE
RS Point Scale A, B, C float
RS Point Scale Enable BOOL
RS Point Size float
RS Point Size Max float
RS Point Size Min float
RS Point Sprite Enable BOOL
RS Position Degree D3DDEGREETYPE
RS Range Fog Enable BOOL
RS Scissor Test Enable BOOL
RS Separate Alpha Blend Enable BOOL
RS Shade Mode D3DSHADEMODE
RS Slope Scale Depth Bias float
RS Specular Enable BOOL
RS Specular Material Source D3DMATERIALCOLORSOURCE

. . . continued

100 CHAPTER 3. DIRECT3D DEVICES

Device State Data Types (continued)
Device State Data Type
RS Src Blend D3DBLEND
RS Src Blend Alpha D3DBLEND
RS sRGB Write Enable BOOL
RS Stencil Enable BOOL
RS Stencil Fail D3DSTENCILOP
RS Stencil Func D3DCMPFUNC
RS Stencil Mask [0, 2s − 1]
RS Stencil Pass D3DSTENCILOP
RS Stencil Ref [0, 2s − 1]
RS Stencil Write Mask [0, 2s − 1]
RS Stencil Z Fail D3DSTENCILOP
RS Texture Factor D3DCOLOR
RS Tween Factor float
RS Two Sided Stencil Mode BOOL
RS Vertex Blend D3DVERTEXBLENDFLAGS
RS Wrap 0− 15 D3DWRAPCOORD
RS Z Enable D3DZBUFFERTYPE
RS Z Func D3DCMPFUNC
RS Z Write Enable BOOL
SS Address U, V, W D3DTEXTUREADDRESS
SS Border Color D3DCOLOR
SS D Map Offset DWORD
SS Element Index DWORD
SS Mag Filter D3DTEXTUREFILTERTYPE
SS Max Anisotropy DWORD
SS Max Mip Level [0, l − 1]
SS Min Filter D3DTEXTUREFILTERTYPE
SS Mip Filter D3DTEXTUREFILTERTYPE
SS Mip Map LOD Bias float
SS sRGB Texture BOOL
TSS Alpha Arg 0− 2 D3DTEXTUREARG
TSS Alpha Op D3DTEXTUREOP
TSS Bump Env L Offset float
TSS Bump Env L Scale float
TSS Bump Env Mat 00− 11 float
TSS Color Arg 0− 2 D3DTEXTUREARG
TSS Color Op D3DTEXTUREOP
TSS Constant float
TSS Result Arg D3DTEXTUREARG
TSS Tex Coord Index [0, 15] | D3DTSS TCI
TSS Texture Transform Flags D3DTEXTURETRANSFORMFLAGS

Table 3.6: Device State Data Types. [i, j] indicates a DWORD value restricted to
the given interval. s is the number of bits in the stencil buffer. m is the number
of multisamples. l is the number of texture levels. D3DTSS TEXCOORDINDEX has
an index in the LOWORD and D3DTSS TCI flags in the HIWORD. 1BOOL is a type
alias for an unsigned integer used with the constants TRUE and FALSE.

3.9. DEVICE STATES 101

3.9.1 Miscellaneous Render States

RS Debug Monitor Token does not control rendering and is not associated with
any particular portion of the pipeline. RS Debug Monitor Token controls debug
information returned by the pipeline as a whole when using the debug runtime.
See chapter 22 for more information on the debug runtime. The debug tokens
are defined by the D3DDEBUGMONITORTOKENS enumeration. The currently defined
debug monitor tokens enable or disable the reporting of debug information from
the runtime.

typedef enum _D3DDEBUGMONITORTOKENS {
D3DDMT_ENABLE = 0,
D3DDMT_DISABLE = 1

} D3DDEBUGMONITORTOKENS;

3.9.2 Setting Groups of State

Often in a Direct3D application we have a collection of render and texture stage
states that need to be set. Writing out each value to be set as a call to Set-
RenderState or SetTextureStageState is tedious. We can automate this with
the following code idiom contained in the file <rt/states.h> located in the
sample code.

Listing 3.1: <rt/states.h>: Setting aggregate state

1 #if !defined(RT_STATES_H)
2 #define RT_STATES_H
3 //--
4 // states.h
5 //
6 // Helper functions for setting render and texture stage states.
7 //
8 #include <d3d9.h>
9

10 namespace rt
11 {
12

13 //--
14 // s_enum_value<Enum>
15 // s_rs
16 // s_tss
17 //
18 // struct for storing a device state and its value
19 template <typename Enum>
20 struct s_enum_value
21 {
22 Enum m_state;

102 CHAPTER 3. DIRECT3D DEVICES

23 DWORD m_value;
24 };
25 typedef s_enum_value<D3DRENDERSTATETYPE> s_rs;
26 typedef s_enum_value<D3DTEXTURESTAGESTATETYPE> s_tss;
27 typedef s_enum_value<D3DSAMPLERSTATETYPE> s_ss;
28

29 //--
30 // set_states
31 //
32 // Set render states on the device.
33 //
34 inline void
35 set_states(IDirect3DDevice9 *device,
36 const s_rs *states, UINT num_states)
37 {
38 for (UINT i = 0; i < num_states; i++)
39 {
40 THR(device->SetRenderState(states[i].m_state,
41 states[i].m_value));
42 }
43 }
44

45 //--
46 // set_states
47 //
48 // Set texture stage states on the device.
49 //
50 inline void
51 set_states(IDirect3DDevice9 *device, UINT stage,
52 const s_tss *states, UINT num_states)
53 {
54 for (UINT i = 0; i < num_states; i++)
55 {
56 THR(device->SetTextureStageState(stage,
57 states[i].m_state, states[i].m_value));
58 }
59 }
60

61 inline void
62 set_states(IDirect3DDevice9 *device, UINT stage,
63 const s_ss *states, UINT num_states)
64 {
65 for (UINT i = 0; i < num_states; i++)
66 {
67 THR(device->SetSamplerState(stage,
68 states[i].m_state, states[i].m_value));

3.9. DEVICE STATES 103

69 }
70 }
71

72 //--
73 // float_dword, dword_float
74 //
75 // Reinterpret a float as a DWORD and vice-versa for device
76 // states represented as a float crammed into a DWORD.
77 //
78 inline DWORD
79 float_dword(float value)
80 {
81 return *reinterpret_cast<DWORD *>(&value);
82 }
83 inline float
84 dword_float(DWORD value)
85 {
86 return *reinterpret_cast<float *>(&value);
87 }
88

89 }; // rt
90

91 #endif

The following code illustrates the use of set states for render and texture
stage states.

// number of elements in a fixed-size array
#define NUM_OF(ary_) (sizeof(ary_)/sizeof(ary_[0]))

// render states
const rt::s_rs render_states[] =
{

D3DRS_LIGHTING, FALSE,
D3DRS_COLORVERTEX, TRUE,
D3DRS_SPECULARENABLE, FALSE,
D3DRS_ALPHATESTENABLE, FALSE,
D3DRS_ZENABLE, D3DZB_FALSE,
D3DRS_DITHERENABLE, TRUE

};
rt::set_states(device, render_states, NUM_OF(render_states));

// stage 0 texture stage states.
const rt::s_tss texture0_states[] =
{

104 CHAPTER 3. DIRECT3D DEVICES

D3DTSS_COLORARG1, D3DTA_TEXTURE,
D3DTSS_COLOROP, D3DTOP_MODULATE,
D3DTSS_COLORARG2, D3DTA_DIFFUSE,
D3DTSS_ALPHAARG1, D3DTA_TEXTURE,
D3DTSS_ALPHAOP, D3DTOP_SELECTARG1

};
rt::set_states(device, 0,

texture0_states, NUM_OF(texture0_states));

// stage 0 sampler states
const rt::s_ss sampler_sates[] =
{

D3DTSS_ADDRESSU, D3DTADDRESS_CLAMP,
D3DTSS_ADDRESSV, D3DTADDRESS_CLAMP,
D3DTSS_MINFILTER, D3DTEXF_LINEAR,
D3DTSS_MAGFILTER, D3DTEXF_LINEAR,
D3DTSS_MIPFILTER, D3DTEXF_NONE

};
rt::set_states(device, 0,

sampler_states, NUM_OF(sampler_states));

// stage 1 texture stage states
const rt::s_tss texture1_states[] =
{

D3DTSS_COLOROP, D3DTOP_DISABLE,
D3DTSS_ALPHAOP, D3DTOP_DISABLE

};
rt::set_states(device, 1,

texture1_states, NUM_OF(texture1_states));

ID3DXEffect and device state blocks provide alternative ways of managing
collections of device state. ID3DXEffect is described in section 18.2. Device
state blocks are described in the next section.

3.10 Device State Blocks

State blocks are COM objects that provide a way for your application to cache
a group of device properties for later use. For instance, two state blocks could
be used for the device properties corresponding to the unselected and selected
appearance of an object in an editor. The IDirect3DStateBlock9 interface is
summarized in interface 3.4.

Each state block is associated with a device, returned by the GetDevice
method. Once a state block has been created, the state block can be applied to
the device by calling Apply on the state block. Calling Capture on an existing
state block captures the current values of the device properties into the state
block.

3.10. DEVICE STATE BLOCKS 105

Interface 3.4: Summary of the IDirect3DStateBlock9 interface.

IDirect3DStateBlock9

Read-Only Properties
GetDevice The associated device.

Methods
Apply Applies the block’s state to the device.
Capture Captures the current device state into the block.

interface IDirect3DStateBlock9 : IUnknown
{
// read-only properties
HRESULT GetDevice(IDirect3DDevice9 **value);

// methods
HRESULT Apply();
HRESULT Capture();

};

There are two ways to create a state block object and fill it with specific
device property values. The first way to create a state block is to call Create-
StateBlock with a D3DSTATEBLOCKTYPE value identifying the kind of state you
want recorded in the block. Table 3.8 summarizes the device properties included
in the state block created with CreateStateBlock.

HRESULT CreateStateBlock(D3DSTATEBLOCKTYPE kind,
IDirect3DStateBlock9 **result);

typedef enum _D3DSTATEBLOCKTYPE
{

D3DSBT_ALL = 1,
D3DSBT_PIXELSTATE = 2,
D3DSBT_VERTEXSTATE = 3,

} D3DSTATEBLOCKTYPE;

The second way of obtaining a state block object is to call BeginStateBlock,
set device properties and then call EndStateBlock. Once BeginStateBlock has
been called, the methods listed in table 3.7 mark their state for capture.

HRESULT BeginStateBlock();
HRESULT EndStateBlock(IDirect3DStateBlock9 **result);

106 CHAPTER 3. DIRECT3D DEVICES

LightEnable SetSamplerState
SetClipPlane SetStreamSource
SetIndices SetTexture
SetLight SetTextureStageState
SetMaterial SetTransform
SetPixelShader SetVertexShader
SetPixelShaderConstantB SetVertexShaderConstantB
SetPixelShaderConstantF SetVertexShaderConstantF
SetPixelShaderConstantI SetVertexShaderConstantI
SetRenderState SetViewport

Table 3.7: Methods captured by BeginStateBlock.

When EndStateBlock is called, each device property marked for capture is
recorded into the state block. If a device property is set multiple times between
BeginStateBlock and EndStateBlock, only the last value set in the property
is captured into the state block.

State blocks do not survive the loss of a device and will need to be destroyed
and recreated when the device is regained. Release the state block COM object
when you are finished with a state block.

Device Properties by State Block Type
Device Property Vertex Pixel All
Clip Planes X
Light X X
Light Enable X
Material X
Pixel Shader X X
Pixel Shader Constant X X
Texture X
Texture Palette X
Transform X
Stream Source X
Vertex Shader X X
Vertex Shader Constant X X
Viewport X
RS Adaptive Tess X, Y, Z, W X X
RS Alpha Blend Enable X X
RS Alpha Func X X
RS Alpha Ref X X
RS Ambient X X
RS Ambient Material Source X X
RS Antialiased Line Enable X X
RS Blend Factor X X
RS Blend Op X X

. . . continued

3.10. DEVICE STATE BLOCKS 107

Device Properties by State Block Type (continued)
Device Property Vertex Pixel All
RS Blend Op Alpha X X
RS CCW Stencil Fail X X
RS CCW Stencil Func X X
RS CCW Stencil Pass X X
RS CCW Stencil Z Fail X X
RS Clipping X X
RS Clip Plane Enable X X
RS Color Vertex X X
RS Color Write Enable X X
RS Color Write Enable 1− 3 X X
RS Depth Bias X X
RS Dest Blend X X
RS Dest Blend Alpha X X
RS Diffuse Material Source X X
RS Dither Enable X X
RS Emissive Material Source X X
RS Enable Adaptive Tessellation X X
RS Fill Mode X X
RS Fog Density X X X
RS Fog End X X X
RS Fog Start X X X
RS Fog Table Mode X X
RS Fog Vertex Mode X X
RS Indexed Vertex Blend Enable X X
RS Last Pixel X X
RS Lighting X X
RS Local Viewer X X
RS Max Tessellation Level X X
RS Min Tessellation LEvel X X
RS Multi Sample Antialias X X
RS Multi Sample Mask X X
RS Normalize Normals X X
RS Patch Edge Style X X
RS Point Scale A, B, C X X
RS Point Scale Enable X X
RS Point Size X X
RS Point Size Max X X
RS Point Size Min X X
RS Point Sprite Enable X X
RS Range Fog Enable X X
RS Scissor Test Enable X X
RS Separate Alpha Blend Enable X X
RS Shade Mode X X

. . . continued

108 CHAPTER 3. DIRECT3D DEVICES

Device Properties by State Block Type (continued)
Device Property Vertex Pixel All
RS Slope Scale Depth Bias X X
RS Specular Material Source X X
RS Src Blend X X
RS Src Blend Alpha X X
RS sRGB Write Enable X X
RS Stencil Enable X X
RS Stencil Fail X X
RS Stencil Func X X
RS Stencil Mask X X
RS Stencil Pass X X
RS Stencil Ref X X
RS Stencil Write Mask X X
RS Stencil Z Fail X X
RS Texture Factor X X
RS Tween Factor X X
RS Two Sided Stencil Mode X X
RS Vertex Blend X X
RS Wrap 0− 15 X X
RS Z Enable X X
RS Z Func X X
RS Z Write Enable X X
SS Address U,V, W X X
SS Border Color X X
SS D Map Offset X X
SS Element Index X X
SS Mag Filter X X
SS Max Anisotropy X X
SS Max Mip Level X X
SS Min Filter X X
SS Mip Filter X X
SS Mip Map LOD Bias X X
SS sRGB Texture X X
TSS Alpha Arg 0− 2 X X
TSS Alpha Op X X
TSS Bump Env L Offset X X
TSS Bump Env L Scale X X
TSS Bump Env Mat 00− 11 X X
TSS Color Arg 0− 2 X X
TSS Color Op X X
TSS Constant X X
TSS Result Arg X X
TSS Tex Coord Index X X X
TSS Texture Transform Flags X X X

. . . continued

3.11. PURE DEVICES 109

Device Properties by State Block Type (continued)
Device Property Vertex Pixel All

Table 3.8: Device Properties by State Block Type

3.11 Pure Devices

When creating the device, we saw that we could request a “pure” hardware de-
vice that performed minimal device state management. Table 3.9 summarizes
the device properties available on a pure device. A pure device has a perfor-
mance advantage because the runtime and driver do not have to keep a copy of
the non-queryable state for the application. If the D3DDEVCAPS PUREDEVICE bit
is set in D3DCAPS9::DevCaps, then the driver supports a pure device.

#define D3DDEVCAPS_PUREDEVICE 0x00100000L

110 CHAPTER 3. DIRECT3D DEVICES

Supported Not Supported
GetAvailableTextureMem GetClipPlane
GetBackBuffer GetClipStatus
GetCreationParameters GetLight
GetCurrentTexturePalette GetLightEnable
GetDepthStencilSurface GetMaterial
GetDeviceCaps GetPaletteEntries
GetDirect3D GetPixelShaderConstantB
GetDisplayMode GetPixelShaderConstantF
GetFrontBufferData GetPixelShaderConstantI
GetFVF GetRenderState
GetGammaRamp GetSamplerState
GetIndices GetTextureStageState
GetNPatchMode GetTransform
GetNumberOfSwapChains GetVertexShaderConstantB
GetPixelShader GetVertexShaderConstantF
GetRasterStatus GetVertexShaderConstantI
GetRenderTarget SetClipStatus
GetRenderTargetData
GetScissorRect
GetSoftwareVertexProcessing
GetStreamSource
GetStreamSourceFreq
GetSwapChain
GetTexture
GetVertexDeclaration
GetVertexShader
GetViewport

Table 3.9: Device property support on a pure HAL device.

