
Chapter 6

Vertex Transformations

“There are two worlds; the world that we can measure
with line and rule, and the world that we feel with our

hearts and imaginations.”
Leigh Hunt: Men, Women, and Books, 1847

6.1 Overview

In the previous chapter, we saw how we could define models with vertex buffers,
index buffers and primitives. We also mentioned that dynamic vertex compo-
nents could be implemented with multiple streams.

If we wanted to move a model, we could edit its definition by locking the ver-
tex buffer and modifying the appropriate vertex components. Direct3D provides
the vertex processing pipeline to transform the model as an alternative to edit-
ing every vertex in the model. The applied transformations include translation,
rotation and scaling of vertices.

“Vertex processing” refers to all the computations that occur for each
vertex of each primitive rendered on the device. Each stage of the vertex pro-
cessing section of the pipeline affects one or more components of a vertex as it
is processed.

Direct3D allows for the application to choose between hardware vertex pro-
cessing, software vertex processing or a combination of the two. It is also possi-
ble to instruct Direct3D to perform software vertex processing and capture the
results of the processing without rendering any primitives.

A vertex transformation is represented as a 4x4 matrix of floats. Matrices
performing the basic operations of translation, rotation, and scaling are pre-
sented.

When multiple transformations are applied, the order in which they are
applied can change the outcome of the composite transformation. Examples of
common composite transformations are given.

199

200 CHAPTER 6. VERTEX TRANSFORMATIONS

Vertex processing begins with the world transformation. The world trans-
formation is applied to model space vertices to map them into world space.
Transform properties of the device are introduced with the GetTransform, Set-
Transform, and MultiplyTransform methods.

Transformations can be used to implement a scene hierarchy. A scene hierar-
chy is useful for drawing rigid jointed figures and relative positioning of models.
We describe a jointed robot arm as an example of a transformation hierarchy.

Multiple world transforms can be applied to a single vertex and the resulting
transformed vertices combined in a weighted average in a technique called ver-
tex blending. Direct3D provides a variety of vertex blending options which
are summarized.

The simplest form of vertex blending is called tweening, where a single
floating point value weights a vertex transformed by two world transformation
matrices. The vertex components for vertex blending weights and their associ-
ated FVF code are given.

Generalized vertex blending supplies two or three blending weights per vertex
allowing three or four matrices to be used for blending.

Indexed vertex blending allows for up to 4 different matrices to be used for
each vertex. For non-indexed vertex blending the matrices for all vertices of a
primitive are the same, only their blending weights are varied per-vertex. For
indexed vertex blending, the indices vary per-vertex, allowing different matrices
to be applied at different vertices.

In the remaining sections we describe the fog, face culling, user clip plane
application, view frustum clipping, homogeneous divide, and viewport applica-
tion stages of the pipeline. The viewing and projection stages are discussed in
chapter 7 and the lighting stage is discussed in chapter 8.

6.2 Vertex Processing

As described in section 2.13, a device can be created with software, mixed or
hardware vertex processing. When a device is created with mixed vertex pro-
cessing, GetSoftwareVertexProcessing and SetSoftwareVertexProcessing
control if the hardware or software is used to process vertices. When this render
state is set to TRUE, software vertex processing is selected, otherwise hardware
vertex processing is selected. This render state is always set to FALSE or TRUE
when the device is created with hardware or software vertex processing, respec-
tively. When this render state is changed, the current streams, current indices,
and current vertex shader are reset to their default values and will need to be
restored.

Vertex processing can be summarized as the following pipeline stages: world
transformation, texture coordinate generation, texture transformation, view
transformation, vertex fog, lighting, projection transformation, primitive assem-
bly, face culling, user clip plane application, view frustum clipping, homogeneous
divide and finally viewport mapping. The end result of all vertex processing is
a so-called “transformed and lit” vertex, with a position component in screen

6.3. TRANSFORMATION MATRICES 201

space, diffuse and specular colors, and up to eight sets of texture coordinates.
This information is fed to the rasterization section of the pipeline where it is
interpolated into a stream of pixels for each primitive. Vertices with D3DFVF -
XYZRHW position components skip all vertex processing and are fed directly to
the rasterization section. The minimal program in listing 2.1 used transformed
vertices to draw a triangle in screen space.

HRESULT ProcessVertices(UINT source_start_index,
UINT destination_index,
UINT vertex_count,
IDirect3DVertexBuffer9 *destination,
IDirect3DVertexDeclaration9 *declaration,
DWORD flags);

The ProcessVertices method can be used to apply software vertex process-
ing to the vertices set on the current stream using all the currently set pipeline
state. The processed vertices are written into the vertex buffer given in the
destination argument, which must be an FVF vertex buffer. The source -
start index and vertex count arguments identify the source range from the
current streams that will be processed. The destination index argument spec-
ifies the starting location in the destination vertex buffer to receive the processed
vertices. The declaration argument gives the vertex declaration of the des-
tination vertex buffer and must use a single stream. When the current vertex
shader is shader model 3.0, then the vertex declaration must be supplied. Oth-
erwise, the declaration argument can be NULL and the FVF code associated
with the output vertex buffer will be used for the output vertices. The flags
argument may be zero or D3DPV DONOTCOPYDATA to avoid copying vertex data
not affected by vertex processing. The flags value can be bitwise orred with
one of the D3DLOCK flags to specify additional locking semantics for the output
buffer.

ProcessVertices will fail if either the input vertex buffer streams or the
destination vertex buffer was not created with D3DUSAGE SOFTWAREPROCESSING.
Software vertex processing usage on a vertex buffer implies software vertex pro-
cessing on the device. An application must create a device with software vertex
processing in order to use ProcessVertices.

6.3 Transformation Matrices

Mathematically, a coordinate transformation is a mapping from one coordinate
frame to another. In a single dimension, this can be thought of as converting
units, such as from inches to centimeters. Inches and centimeters are related by
a simple scaling transformation of 2.54 cm/in. A more general one-dimensional
mapping for a quantity x is x′ = mx + b, which allows for scaling by m and
translation by b.

In three dimensions, we need to be able to rotate a point in addition to scaling
and translating it. We can create a mapping similar to our one-dimensional case

202 CHAPTER 6. VERTEX TRANSFORMATIONS

with a 3x3 matrix and a 1x3 row matrix.

P ′ = PM + b

= [x y z]




m11 m12 m13

m21 m22 m23

m31 m32 m33


 +

[
b1 b2 b3

]

M defines the rotation and scaling applied to P and b adds the translation. A
vertex can also have a surface normal, which must also be transformed.

With homogeneous coordinates, we can use a single matrix for the entire
transformation instead of using two matrices of different sizes. When P ’s carte-
sian coordinates are extended to homogeneous coordinates, a single 4x4 matrix
can represent scaling, rotation and translation for three dimensional points.
This gives P ′ = PM′, with M′ composed of elements of M and b:

[
x′ y′ z′ 1

]
=

[
x y z 1

]



m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
b1 b2 b3 1




The upper 3x3 submatrix corresponds to rotation and scaling and the bot-
tom row of the matrix corresponds to translation. The homogeneous transfor-
mation matrix can also be used to implement perspective foreshortening with
the rightmost column, as we will see in the next chapter. The following trans-
formation matrices are given for a left-handed coordinate system. For rotations,
the angle θ is given in radians with a counterclockwise rotation about the axis
corresponding to increasing values of θ.

Translate by (x, y, z) T(x, y, z)=




1 0 0 0
0 1 0 0
0 0 1 0
x y z 1




Uniform scale by s S(s)=




s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1




Non-uniform scale by (sx, sy, sz) S(sx, sy, sz)=




sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1




Rotation about the X-axis by θ Rx(θ)=




1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




6.4. ORDER OF TRANSFORMATIONS 203

Rotation about the Y-axis by θ Ry(θ)=




cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1




Rotation about the Z-axis by θ Rz(θ)=




cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1




When a vertex contains a surface normal, the normal vector is specified in
the same coordinate frame as the position. When the position is mapped to
a new coordinate frame with a transformation matrix, the normal vector must
also be mapped into the new coordinate frame. However, the normal vector
shouldn’t be distorted when transformed so that the proper surface orientation
is preserved. If the position is transformed by M, then transforming the normals
by the inverse transpose of M = (M−1)T preserves their orientation, although
they may still be scaled by the transformation.

6.4 Order of Transformations

A complex transformation, such as rotating around a point other than the ori-
gin, is built from simple transformations by multiplying the transformations
together. Matrix multiplication is not commutative, so the order in which we
multiply the transformation matrices is important. For instance, suppose we
have two transformation matrices: T contains a translation and R contains a
rotation. In general, TR 6= RT. In this case, translation followed by rotation is
not the same thing as rotation followed by translation, as depicted in figure 6.1.

The simple scaling and rotation matrices operate with the origin as the
center of scaling and rotation, respectively. To perform rotations about a point
other than the origin, first translate the point to the origin, perform the desired
rotation, and then translate the origin back to the point. Scaling about a point
other than the origin is similar to rotation about a point. To rotate about an
arbitrary axis, first rotate the axis to coincide with one of the three principal
axes

#»
i ,

#»
j , or

#»

k , then perform the desired rotation, and then rotate the principal
axis back to coincide with the axis of rotation.

Building a complex chain of transformations is a breeding ground for bugs
in 3D applications. It is very easy to get one of the transformations wrong and
get something that looks tantalizingly close to correct, but has anomolies. A
good way to avoid mistakes is to draw a diagram of the composite transforma-
tion as a series of simple transformations. Draw one coordinate frame diagram
for each simple transformation in the composite. Write down the appropriate
transformation matrix for each step in the composite transformation. If the
transformation can’t be written as a simple transformation, break it down fur-

204 CHAPTER 6. VERTEX TRANSFORMATIONS

-
x

6y

(a)

Rz(π
2)

s
-
x

6y

(b)

T(0,−5, 0)

s
-
x

6y

(c)

-
x

6y

(d)

T(0,−5, 0)

s
-
x

6y

(e)

Rz(π
2)

s
-
x

6y

(f)

Figure 6.1: Illustration of the order of transformations on the letter “F” in the
xy plane. (a)-(c) depict a rotation followed by a translation, Rz(π

2)T(0,−5, 0).
(d)-(f) depict the same simple transformations in the reverse order: transla-
tion followed by rotation, T(0,−5, 0)Rz(π

2). The non-commutivity of matrix
multiplication is seen by comparing (c) with (f).

ther until all steps are simple transformations. After all the transformations
have been identified, refer to your diagram of the composite and multiply them
from left to right in the order they should be applied.

Consider figure 6.2, which depicts the series of transformations needed to
rotate a model of the letter “F” about the point P indicated in the figure. If
we simply rotate by π/2, we end up moving the model as well as rotating it
because the center of rotation is not the origin. To rotate about P , we first
translate P to the origin, perform the rotation, and then transform the origin
back to P . Similar composite transformations can be built for rotation about
the other principal axes and for scaling.

To rotate about an arbitrary axis #»a , you first compose three transformations
that rotate #»a to be coincident with one of the principal axes

#»
i ,

#»
j , or

#»

k ,
then perform the desired rotation about that principal axis, then rotate the
principal axis to be coincident with #»a . Rotation matrices are a special case of
transformation matrices in that they are commutative under multiplication, so
that R1R2 = R2R1. Therefore, it doesn’t matter in what order we multiply
the three rotation matrices that rotate one axis to be coincident with another.

The D3DX library provides a collection of utility functions for generating
simple transformation matrices such as Rx. They are described in section 16.4.

6.5. WORLD TRANSFORMATION 205

-
x

6y

¡
¡

¡
¡µ

z

qq qq q

P
QQk

s

T(−P)

(a)

-
x

6y

¡
¡

¡
¡µ

z

qq qq q

s

Rz(π
2)

(b)

-
x

6y

¡
¡

¡
¡µ

z

q q qqq

s

T(P)

(c)

-
x

6y

¡
¡

¡
¡µ

z

q q qqq

(d)

Figure 6.2: Illustration of a composite vertex transformation. The letter “F” in
the xy plane is rotated clockwise by π

2 about the point P . The letter remains
in the xy plane after the composite transformation because the axis of rotation
is perpendicular to the plane.

6.5 World Transformation

In chapter 5 we described how models are built from vertices with coordinates
in model space. The world transformation is the first operation applied during
vertex processing and maps coordinates from model space to world space.
The simplest transformation from model space to world space is to multiply the
position component by a transformation matrix.

The surface normal component of a vertex is also specified in model space.
When a vertex is transformed, we must transform not only its position compo-
nent but also its normal component. While the position component is a point
in space, the surface normal is a vector in space. Direct3D uses a modified
transformation matrix when it transforms normals so that the orientation of
the normals will be preserved. The modified matrix is the inverse transpose
of the world transformation. This matrix can still contain scaling transforma-
tions, possibly changing a surface normal’s length. Direct3D can compensate
for changes in the length of a surface normal, see chapter 8.

The type of world transformation applied to the vertex is controlled by
RS Vertex Blend, with values of type D3DVERTEXBLENDFLAGS. When RS Vertex
Blend is D3DVBF DISABLE, the vertices are processed through a single world
transformation matrix.

typedef enum _D3DVERTEXBLENDFLAGS
{

D3DVBF_DISABLE = 0,
D3DVBF_0WEIGHTS = 256,
D3DVBF_1WEIGHTS = 1,
D3DVBF_2WEIGHTS = 2,
D3DVBF_3WEIGHTS = 3,
D3DVBF_TWEENING = 255,

} D3DVERTEXBLENDFLAGS;

206 CHAPTER 6. VERTEX TRANSFORMATIONS

The GetTransform and SetTransform methods manipulate the transform
properties of the device. The different kinds of transform properties are given
by the D3DTRANSFORMSTATETYPE1 enumeration and associated macros. D3D-
TS WORLD specifies the world transformation applied when vertex blending is
disabled.

HRESULT GetTransform(D3DTRANSFORMSTATETYPE kind,
D3DMATRIX *value);

HRESULT SetTransform(D3DTRANSFORMSTATETYPE kind,
const D3DMATRIX *value);

typedef enum _D3DTRANSFORMSTATETYPE {
D3DTS_WORLD = 256,
D3DTS_WORLD1 = 257,
D3DTS_WORLD2 = 258,
D3DTS_WORLD3 = 259,
D3DTS_VIEW = 2,
D3DTS_PROJECTION = 3,
D3DTS_TEXTURE0 = 16,
D3DTS_TEXTURE1 = 17,
D3DTS_TEXTURE2 = 18,
D3DTS_TEXTURE3 = 19,
D3DTS_TEXTURE4 = 20,
D3DTS_TEXTURE5 = 21,
D3DTS_TEXTURE6 = 22,
D3DTS_TEXTURE7 = 23

} D3DTRANSFORMSTATETYPE;

D3DTRANSFORMSTATETYPE D3DTS_WORLDMATRIX(UINT index);

6.6 Transformation Hierarchy

In addition to replacing a transformation matrix property with SetTransform,
you can also pre-multiply a matrix onto the existing matrix with Multiply-
Transform. If a model is composed of pieces where each piece is positioned
relative to another piece, then MultiplyTransform can be used to compose the
necessary transformations as the hierarchy is rendered.

HRESULT MultiplyTransform(D3DTRANSFORMSTATETYPE transform,
const D3DMATRIX *value);

The diagram in figure 6.3 shows a simple robot arm consisting of two seg-
ments L1 and L2, called linkages, and locations where the segments meet an-
other object, called joints. The entire ensemble is referred to as a jointed linkage,

1The world matrix symbols are shown as part of the enumeration; the header file defines
them as macros with the given values.

6.7. VERTEX BLENDING 207

B

θ1

½¼

¾»
J1

¡
¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡

¡
¡¡

L1

½¼

¾»
J2

θ2

L2

Figure 6.3: Jointed linkage transformation hierarchy showing a simple robot
arm model in the xy plane consisting of a base B, two linkages L1 and L2, and
two joints J1 and J2. Joint J1 positions linkage L1 at angle θ1 relative to the
base and joint J2 positions linkage L2 at angle θ2 relative to linkage L1. In the
figure, θ1 = π

4 and θ2 = −π
4 .

and can easily be drawn by creating a local coordinate frame for each piece of
the model and composing transformations between local coordinate frames to
position the pieces. In this simple figure, each joint has the freedom to rotate
only in the xy plane.

Drawing this robot arm starts by locating the arm relative to the other
objects in the scene with SetTransform. The base B is positioned relative to
the location of the entire arm with MultiplyTransform and then it is drawn.
Next, all the elements of the model relative to the base are drawn. The joint J1

is relative to the base and it is positioned with MultiplyTransform and then
drawn. This continues for linkage L1, joint J2 and linkage L2 which are all
relative to each other.

6.7 Vertex Blending

A jointed linkage is fine for robots, or even insects, both of which have a stiff
outer shell composed of elements that move by rigid transformations. Other
objects, such as cloth, plants and animals, are flexible and accurately describing
their motion requires more than rigid transformations applied to pieces of the
model.

One approach to simulating the deformation of the skin when an animal
moves is to transform each model vertex multiple times, each with a different
transformation matrix. The resulting world-space vertices are combined in a
weighted average. The simplest case of vertex blending is when two matrices

208 CHAPTER 6. VERTEX TRANSFORMATIONS

P0•©©©©©©©©

β0=1.0
β1=0.0

P ′•

0.4
0.6

P1•

0.0
1.0

•
•

•

•
(((((((((

PPPPP@
@

@
@

@
@

´
´

´
´́

B
B
B
BB¯

¯
¯
¯
¯
¯
¯̄P2

P1

P0

P ′ β0

β1

β2

•

•

•

•

•Q
Q

Q
QQ

C
C
C
C
C
C¡

¡
¡

XXXXXX

´
´

´
´́

J
J

J
JJ¥

¥
¥
¥
¥
¥
¥¥

P3

P2

P ′

P1

P0

β0

β1

β2

β3

(a) (b) (c)

Figure 6.4: Visualization of vertex blending with two, three and four matrices.
Pi are the images of the model space vertex position P under the world trans-
formation Mi. P ′ is the resulting blended vertex position. (a) β0 moves P ′

along the line between P0 and P1. (b) β0 and β1 move P ′ inside the triangle
defined by P0, P1 and P2. (c) β0, β1 and β2 move P ′ inside the region bounded
by P0, P1, P2, and P3.

and a single weight is used to blend between the two transformed points. This
formula is similar to the alpha blending formula presented in section 1.4. Vertex
blending with a single weight may be visualized as interpolating along a straight
line connecting the two transformed points P0 and P1, with β locating a distance
along the line, as shown in figure 6.4(a).

P ′ = β0P0 + (1− β0)P1

= β0PM0 + (1− β0)PM1

#»n ′ = β0
#»n0 + (1− β0) #»n1

= β0
#»n(M−1

0)T + (1− β0) #»n(M−1
1)T

Assigning a β value to each vertex defines the ratio of transformations at
each vertex. Usually the blend weight values will be assigned by a modeling
program where a user interface is provided for controlling the appearance of
vertex blending.

The resulting appearance of a vertex blended model is influenced by the
transformation matrices M0 and M1, the distribution of the weights along the
model, and the model itself. Figure 6.5 plots six different distributions of blend
weights on the interval [0, 1]. Figure 6.6 shows the result of applying a transla-
tion using those distributions. The blend weights were computed for the model
by normalizing the x coordinate of each vertex into the interval [0, 1] and com-
puting β(x). Figure 6.7 shows the result of applying different transformations
to the same weight distribution.

We can extend this technique to using N matrices and N − 1 blend weights
per vertex instead of just two matrices. The final weight is always determined
by the system to ensure that the sum of all weights is one. With two blend
weights per vertex, each vertex can be positioned inside a triangle defined by

6.7. VERTEX BLENDING 209

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

β(x)

Blend Weight Distribution Functions

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
33333333333333

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+2222222222222222

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2222222222222222××444

444
444

444
444

444
444

444
444

444
444

444
444

444
444

444
44

??????????????????? ?
?
?

?

?

?

?

?

?

?
?
? ???????????? ???????

Figure 6.5: Sample blend weight functions β(x) defined for x in [0, 1].

3 : β(x) = 1− sin(πx)
× : β(x) = 1− x
4 : β(x) = x

? : β(x) = 1
1 + e−25(x−0.5)

+ : β(x) =
{

2x, x ∈ [0, 0.5]
2(1− x), x ∈ (0.5, 1]

2 : β(x) =





0, x ∈ [0, 0.3)
2.5(x− 0.3), x ∈ [0.3, 0.7]

1, x ∈ (0.7, 1]

210 CHAPTER 6. VERTEX TRANSFORMATIONS

(a) sinusoidal 3 (b) sawtooth +

(c) fraction 4 (d) inverted fraction ×

(e) bracketed 2 (f) sigmoidal ?

Figure 6.6: Illustration of the effect of blend weight functions on a triangle mesh
of the Microsoft logo. The blend consists of a simple Y-axis translation applied
to the mesh with M0 = I and M1 = T(0, P, 0). The results of applying these
matrices with the different blend weight functions is shown with a suggestive
name for the function and its symbol in figure 6.5.

6.7. VERTEX BLENDING 211

(a) axis rotation about origin (b) axis rotation about center

(c) scale about center (d) Y translation

(e) Y rotation about left (f) Y rotation about center

Figure 6.7: The effect of the world transformation on vertex blending. The same
mesh is used as in figure 6.6. For all cases the blend function is the “bracketed”
function 2 from figure 6.5. (a) and (b) perform the same rotation about the
origin and the mesh’s center point, respectively. (c) performs a uniform scaling
about the center of the mesh, (d) performs a translation along the Y-axis, (e)
and (f) perform the same rotation around the Y-axis about the minimum and
center points of the mesh, respectively. The differences are more pronounced
when the mesh is put in motion.

212 CHAPTER 6. VERTEX TRANSFORMATIONS

the three transformed points. With three weights per vertex, each vertex can
be positioned inside the region bounded by the four transformed points, see
figure 6.4. The following formula computes the final position P ′ and normal #»n ′

for N − 1 blend weights per vertex (N matrices).

βN = 1−
N−1∑

k=0

βk

P ′ =
N∑

k=0

βkPMk

#»n ′ =
N∑

k=0

βk
#»n(M−1

k)T

6.7.1 Basic Vertex Blending

Direct3D exposes fixed-function blending through the D3DVERTEXBLENDFLAGS
value in RS Vertex Blend. When this value is D3DVBF 1WEIGHTS, D3DVBF 2-
WEIGHTS, or D3DVBF 3WEIGHTS, it indicates that each vertex has 1, 2, or 3 addi-
tional floats in the position component. The floats give the β0, β1 and β2 blend
weights for each vertex used with 2, 3, or 4 matrices, respectively. If D3DVBF -
0WEIGHTS is specified, a single matrix with a weight of 1.0 for each vertex is
used. This gives the same result as D3DVBF DISABLE. RS Vertex Blend can be
set to use fewer weights than are supplied with the vertex. The final weight
will still be computed so that all the blend weights sum to one. Setting RS
Vertex Blend to use more weights than are defined in the vertex is an error. The
number of matrices that can be used at any one time is given by D3DCAPS9-
::MaxVertexBlendMatrices, which may vary based on the device’s creation
parameters.

When using an FVF to describe vertices, the D3DFVF XYZBn FVF flags spec-
ify the number of blend weights stored in the position component of each vertex.
With D3DFVF XYZB1, D3DFVF XYZB2 and D3DFVF XYZB3 the final blend weight is
computed implicitly from the blend weights given in the vertices. With D3D-
FVF XYZB4 the runtime uses β0, β1, β2, and β3 as the blend weights directly
without computing the fourth weight implicitly. With D3DFVF XYZB5 the run-
time uses β0, β1, β2, β3 as the explicit blend weights and β4 as the blend matrix
indices for indexed vertex blending.

When using a vertex shader declaration to describe vertices, the blend weights
are mapped to the blend weights usage semantic. The blend matrix indices are
mapped to the blend indices usage semantic.

The blend weights β0, β1, β2 and β3 are associated with the four blend
matrices D3DTS WORLD, D3DTS WORLD1, D3DTS WORLD2, or D3DTS WORLD3. The
same matrices can be specified with the D3DTS WORLDMATRIX() macro using the
arguments 0, 1, 2 or 3, respectively. The blend matrices are manipulated with

6.7. VERTEX BLENDING 213

calls to GetTransform and SetTransform.
In Direct3D, the blend matrix includes the world transformation W for the

vertex as well as its deforming transformation D. Matrix composition can be
used when the deforming transformation is given in world coordinates, or when
an additional world transformation is to be applied after a model space defor-
mation. In the former, use WD for the vertex blend matrix to map the model
to world coordinates and then perform a deformation in world coordinates. In
the latter, use DW for the vertex blend matrix to perform the deformation in
model space and then map the blended vertex to world coordinates.

6.7.2 Indexed Vertex Blending

While a broad range of deformations can be created with vertex blending, it
is still somewhat restrictive for a complex model with many joints, like a hu-
man being. With vertex blending the maximum number of transformations
that can be applied by the API is four per vertex (or triangle) and the same
transformations must be used for all vertices in each call to the DrawPrimitive
methods.

With indexed vertex blending, also called matrix palette skinning, matrix
indices are stored in each vertex and each index selects a matrix from a palette
to use for each weight. A vertex with N blend weights will use N + 1 matrices
and have an additonal N +1 matrix indices. This allows up to four independent
matrices per vertex or twelve matrices per triangle. The blend formulas for
indexed vertex blending are identical to the vertex formulas with an additional
level of indirection through the blend matrix indices Ik.

βN = 1−
N−1∑

k=0

βk

P ′ =
N∑

k=0

βkPMIk

#»n ′ =
N∑

k=0

βk
#»n(M−1

Ik
)T

Indexed vertex blending is enabled through RS Indexed Vertex Blend Enable,
and vertex blending is controlled through D3DRS VERTEXBLEND. The size of the
matrix palette for a device is given by D3DCAPS9::MaxVertexBlendMatrix-
Index. If this value is zero, then the device does not support indexed vertex
blending. The number of supported indices per vertex is the same as the number
of supported vertex blend matrices.

With an FVF vertex buffer, the indices are specified by adding an additional
“weight” to each vertex and including the flag D3DFVF LASTBETA UBYTE4. This
flag reinterprets the last vertex blend weight in the vertex as a DWORD containing

214 CHAPTER 6. VERTEX TRANSFORMATIONS

the matrix indices. The indices are stored as BYTEs packed into a single DWORD,
giving a range of [0, 255] for blend matrix indices. I0, the index associated with
β0 and M0, is stored in the least significant BYTE of the DWORD. I1 is stored in
the next signficant BYTE, and so-on.

I3 I2 I1 I0

31 0

With a fixed-function vertex shader, the matrix index stream data is mapped
to the blend indices usage semantic. With a programmable vertex shader, the
stream data can be mapped to any input register. As described in section 5.8,TODO: Work out

UBYTE4 presence the D3DDECLTYPE UBYTE4 stream data type may not be available. In this sit-
uation, the indices are declared as D3DDECLTYPE D3DCOLOR, but they will need
to be rescaled from the [0, 1] range, see chapter 9. If the blending indices are
declared as D3DDECLTYPE SHORT2 or D3DDECLTYPE SHORT4, then no scaling is
required.

6.7.3 Vertex Tweening

Some vertex blending effects can’t be achieved with vertex blending through ma-
trices, but can be achived with a method called tweening.2 The name derives
from traditional film animation where a character is drawn with a beginning
and ending pose by one animator and another animator drew the “in between”
frames that move the character from one pose to another.

The fixed-function pipeline provides vertex tweening in a similar fashion to
the approach used in film animation. A device supports Vertex tweening when
the D3DVTXPCAPS TWEENING bit of D3DCAPS9::VertexProcessingCaps is set.

#define D3DVTXPCAPS_TWEENING 0x00000040L

Each vertex is defined with two positions, and optionally two normals. The
two components P1 and P2 are combined with a tween factor f before being
transformed by a the world transformation matrix M.

P ′ = [(1− f)P1 + fP2]M
#»n ′ = [(1− f) #»n1 + f #»n2](M−1)T

Vertex tweening is enabled when RS Vertex Blend is D3DVBF TWEENING. The
tween factor f is supplied by RS Tween Factor and must be in the range [0, 1].
M is the D3DTS WORLD matrix.

Fixed-function vertex tweening must be used with a vertex shader decla-
ration; it cannot be used with an FVF code shader. Tweening also requires

2Also referred to as “morphing”, from the word metamorphosis.

6.7. VERTEX BLENDING 215

that the vertex components for the second position and normal appear last in
the vertex. The vertex declaration maps the stream data for P1 and P2 to the
position usage semantic for usage indices zero and one, respectively. If normals
are present, both n1 and n2 must be present. n1 and n2 are mapped to normal
usage semantic for usage indices zero and one, respectively.

With vertex tweening, each vertex moves independently of all other vertices,
while with vertex blending, they all move under the influence of the same set
of transformations. While vertex tweening cannot introduce or remove vertices,
vertices can be made coincident to produce degenerate primitives that are not
rasterized.

6.7.4 Blending Within Device Limitations

Vertex blending is a powerful technique, but may not be supported natively on
the hardware. The device may not have hardware vertex processing, or it might
not support more than a single world transformation matrix, or it might not
support indexed vertex blending, or it might support too few matrices in the
matrix palette.

However, even a model with many joints and vertex blending transformations
doesn’t use all the transformations for every triangle. Usually it is possible to
partition the model into groups of primitives, where all primitives in a group
use at most the number of blend matrices supported on the device. For each
group, the blend matrices are set appropriately.

If a group of primitives uses more blend matrices than are supported in
hardware, you can eliminate the transformation with the smallest contribution
to the final blend and renormalize the remaining weights. For every primitive
in the group find the blend transformation k that contributes least to all the
primitives in the group. Remove βk from each vertex for each primitive in the
group, and compute new blend weights by renormalizing the remaining weights.

β′i =
βi

1− βk

Another approach to device vertex blending limitations is to change the way
vertex blending is performed. Software vertex processing fully supports vertex
blending and can be used in cases where hardware vertex processing is insuffi-
cient. A programmable vertex shader can perfrom vertex blending of arbitrary
complexity, limited only by vertex shader capabilities and performance. The
runtime uses CPU optimized code for software vertex processing of both fixed-
function and programmable vertex shaders, making this a viable alternative for
not much effort.

When all else fails, an application can simply disable vertex blending when
support is lacking, using only rigid transformations for orienting models.

D3DX contains functions for converting an arbitrary skinned mesh into a
mesh using vertex blending or indexed vertex blending, see chapter 19.

216 CHAPTER 6. VERTEX TRANSFORMATIONS

6.8 Vertex Fog

Fog, also called depth-cueuing, is an effect that changes an object’s color based
on its depth from the camera. The object’s color C is changed by blending it
with the fog color Cf using a fog factor f .

C ′ = fC + (1− f)Cf

The fog factor f is computed based on the object’s distance from the camera.
Fog changes the color of objects, but it does not change an object’s transparency,
so the alpha channel remains untouched by the fog blend.

Direct3D provides support for two kinds of fog application: vertex fog
and pixel fog Only one of these can be used at a time and pixel fog cannot
be used with programmable vertex shaders. With vertex fog, the fog factors
are computed per-vertex as part of vertex processing and these fog factors are
interpolated for each pixel produced by rasterization. With pixel fog, also called
table fog, the fog factors are computed per-pixel during rasterization, usually
by a table lookup from the pixel’s depth. Direct3D also allows an application
to compute the fog factor for each vertex and supply it to the rasterizer for
interpolation. Once the fog factor has been determined, the fog blend is applied
to the pixel as the last stage of pixel processing.

RS Fog Enable controls the application of fog altogether. If this state is
FALSE, then no fog computations are performed. The fog color Cf is defined by
RS Fog Color; only the RGB channels are used. RS Fog Vertex Mode and RS
Fog Table Mode contain values of D3DFOGMODE and select either vertex or pixel
fog, respectively. A device supports vertex or pixel fog on triangle primitives
if the D3DPRASTERCAPS FOGVERTEX or D3DPRASTERCAPS FOGTABLE bit of D3D-
CAPS9::RasterCaps is set, respectively. If the D3DLINECAPS FOG bit of D3D-
CAPS9::LineCaps is set, then fog is supported on point and line primitives.

typedef enum _D3DFOGMODE {
D3DFOG_NONE = 0,
D3DFOG_LINEAR = 3,
D3DFOG_EXP = 1,
D3DFOG_EXP2 = 2

} D3DFOGMODE;

With fixed-function processing, one or both of RS Fog Table Mode and RS
Fog Vertex Mode can be set to D3DFOG NONE. Enabling RS Fog Table Mode and
RS Fog Vertex Mode simultaneously results in an error. To supply application
computed fog factors, either through stream data or a programmable vertex
shader, set both fog modes to D3DFOG NONE and RS Fog Enable to TRUE. The fog
mode selects a formula that is used to compute the fog factor based on depth.
The formulas are plotted in figure 6.8 and given below.

6.8. VERTEX FOG 217

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(z)

Scene Depth z

Fog Factor Functions
??????????????????? ???????????? ???????????? ???????

3
3
3
3
3
3
3
3
3
3
3
3
3
3333333333333333333333333333333333333

2

2

2

2

2

2
2
2
2
2
2
2
22222222222222222222222222222222222222

++++++
+
+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++

×××
×
×
×
×
×
×
×
××

3: D3DFOG EXP with d = 3.33 +: D3DFOG EXP2 with d = 3.33
2: D3DFOG EXP with d = 6.66 ×: D3DFOG EXP2 with d = 6.66

?: D3DFOG LINEAR with zs = 0 and ze = 1

Figure 6.8: Fog factor functions f(z) plotted versus scene depth z.

D3DFOG LINEAR f(z) =





1, z < zs
ze−z

ze−zs
, z ∈ [zs, ze]

0, z > ze

D3DFOG EXP f(z) = e−dz

D3DFOG EXP2 f(z) = e−(dz)2

Linear fog ramps from the object’s color to the fog color when the depth is in
the range [zs, ze]. RS Fog Start and RS Fog End specify zs and ze, respectively.
Exponential fog makes a smoother transition between the object’s color and the
fog color. Exponential fog has a density parameter d that controls the falloff of
the fog factor; d is defined by RS Fog Density.

The fog distance is usually computed as the distance to a plane at depth z
from the camera. For points distant from the center of the image, this is not the
true distance between the camera and the point. Range-based fog computes the
true distance from a point to the camera for use with the fog factor formula. If
the D3DPRASTERCAPS FOGRANGE bit of D3DCAPS9::RasterCaps is set, the device
supports range-based fog. Range-based fog is controlled with RS Range Fog
Enable.

The coordinate space of the depth value used in fog computations can vary.
With vertex fog, the distance is measured in camera space before projection.
The range of depth values is [zn, zf] where zn and zf are the near and far planes

218 CHAPTER 6. VERTEX TRANSFORMATIONS

••

•
A

BC

A
A
A
A
A
A
A
AAU

¢
¢

¢
¢

¢
¢

¢
¢¢®

¾#»n4 - − #»n4
Front Back

Figure 6.9: Computing the plane normal for triangle ABC with the vertices
{A, B, C}. The two vectors

»

AB and
»

AC are independent vectors in the plane
of the triangle. The cross-product of these two vectors is perpendicular to the
plane containing the triangle.

of the view volume, as described in chapter 7. With pixel fog, the distance is
measured either in the unit interval [0, 1] with Z buffering or in camera space
with W buffering. W buffering is an alternative to Z buffering. Both are dis-
cussed in chapter 14. The D3DPRASTERCAPS ZFOG and D3DPRASTERCAPS WFOG
bits of D3DCAPS9::RasterCaps indicate that the device supports Z buffer fog
and W buffer fog, respectively.

With fixed-function vertex processing, application supplied fog factors are
stored in the alpha channel of the specular color vertex component. With pro-
grammable vertex processing, the application is free to store arbitrary per-vertex
fog data in the data stream, or generate it entirely within the shader from other
vertex data such as position, see chapter 9.

6.9 Face Culling

Most models have about half of their triangles facing the viewer. When the
triangle is positioned relative to the viewer, the triangle’s normal vector points
towards the viewer if the triangle is visible. The surface normal points away from
the viewer when the triangle faces away from the viewer. Triangles facing away
from the viewer are “back-facing” triangles. We can use the relative orientation
of the triangle normal to cull triangles from further processing. This avoids all
the rasterization processing for triangles that won’t be seen.

Face culling uses the normal to the plane containing the triangle. Direct3D
does not use the surface normal vertex component for culling. Face culling is a
property of the triangle, not the smooth surface approximated by the triangle.
The normal is computed from the triangle’s vertices. Any plane normal vector
is the cross-product of two linearly independent vectors in the plane. “Linearly
independent” just means that the two vectors shouldn’t point in the same di-
rection, or exactly opposite to each other. The triangle ABC in figure 6.9 has
vertices A(xa, ya, za), B(xb, yb, zb) and C(xc, yc, zc), in clockwise order. The
vectors

»

AB and
»

AC satisfy the cross-product condition. Their cross-product

6.9. FACE CULLING 219

#»v

?
-¡

¡¡µ
6

@
@@I

¾
¡

¡¡ª
?

@
@@R

#»n7

#»n6

#»n5

#»n4
#»n3

#»n2

#»n1
#»n0

#»ni θ cos θ

#»n0 0 1
#»n1

π
4

1√
2

#»n2
π
2 0

#»n3
3π
4 − 1√

2

#»n4 π −1
#»n5

5π
4 − 1√

2

#»n6
3π
2 0

#»n7
7π
4

1√
2

Figure 6.10: Determining back-facing triangles for triangle normal vectors #»ni

and the line of sight vector #»v . The angle θ between the two vectors is computed
from their dot product #»ni · #»v . The normals #»n3, #»n4, and #»n5 are back-facing.
The normals #»n2 and #»n6 are edge-on to the viewer, resulting in a degenerate
triangle. The normals #»n0, #»n1 and #»n7 are front-facing.

gives the plane normal #»n4.

»

AB = 〈xb − xa, yb − ya, zb − za〉
»

AC = 〈xc − xa, yc − ya, zc − za〉
#»n4 =

»

AB ⊗ # »

AC

The order of the vertices defining the triangle can reverse the sign of the
resulting normal vector. The order of the vectors in the cross-product operation
also reverses the sign of the normal vector since #»a ⊗ #»

b = − #»

b ⊗ #»a . The formulas
given above are for the triangle with vertices specified in a clockwise order.

Once the plane normal for the triangle has been determined based on the
winding order, the relative orientation of the plane normal and the line of sight
of the camera can be computed with a vector dot product. Figure 6.10 illustrates
the relative positioning of the plane normal #»n to the line of sight vector #»v . If
the sign of the dot product is negative, then the triangle is back-facing.

After vertices have been transformed, the line of sight is straight down the z
axis. In this situation, the orientation of a triangle is simplified into determining
the winding order of the transformed vertices. In figure 6.9 the transformed
vertices {A, B, C} are in clockwise order and represent a front-facing triangle.
The triangle with transformed vertices {A, C, B} are in counter-clockwise order
and represent a back-facing triangle.

Direct3D assumes that all visible triangles are front-facing. Face culling op-
erates best on models without holes, where no back-facing triangles are visible.

220 CHAPTER 6. VERTEX TRANSFORMATIONS

If the exterior surface of an object is modeled with a “hole”, the interior of the
model will be visible. If back facing triangles are culled, then the interior will
not be visible at all. Even when the triangles are not culled, they are improp-
erly processed by Direct3D because their surface normals point in the wrong
direction for the interior surface. The solution is to also model the interior of
the object. If clipping planes are used to cut away an object, capping geometry
can be computed at the clip plane intersection to avoid back-facing triangles.

Face culling is specified by RS Cull Mode of type D3DCULL. D3DCULL NONE
disables face culling. D3DCULL CW culls triangles whose transformed vertices form
a clockwise path. D3DCULL CCW, the default, culls triangles whose transformed
vertices form a clockwise path. Lines 43–48 of listing 2.1 on page 45 lists vertices
for a single screen-space triangle in clockwise order. If lines 46 and 47 are
reversed, the screen-space orientation of the triangle will be counter-clockwise
and the triangle will be culled.

typedef enum _D3DCULL {
D3DCULL_NONE = 1,
D3DCULL_CW = 2,
D3DCULL_CCW = 3

} D3DCULL;

A device indicates face culling support with three bits of the Primitive-
MiscCaps member of D3DCAPS9. Each set bit indicates support for the corre-
sponding cull mode.

#define D3DPMISCCAPS_CULLNONE 0x00000010L
#define D3DPMISCCAPS_CULLCW 0x00000020L
#define D3DPMISCCAPS_CULLCCW 0x00000040L

6.10 Clipping

Primitives are clipped when they cross a boundary. The boundary can be the
edge of the render target, or it can be an arbtirary plane in 3-space. When a
primitive is clipped, Direct3D determines the portion inside the boundary and
renders that portion. The rendered portion is determined by computing the
intersection of the primitive with the boundary plane, introducing new vertices
at the intersection.

The new vertices are computed by finding the intersection of the geometry
with the clip plane, see figure 6.11. Points are clipped when the center of the
point is outside the clip plane. In the figure, point B is clipped. Points A
and C are not clipped. Lines are clipped by determining the intersection point
and rendering the inside portion. Line segment AB is clipped to produce the
line segment AB′. Line segment AC is not clipped. A triangle is clipped by
determining the intersection of the clip plane with the sides of the triangle.
This may require the introduction of an additional vertex for a clipped triangle.
Triangle ABC is clipped to produce two triangles AB′B′′ and AB′′C.

6.10. CLIPPING 221

•

••A B

C ´
´

´
´

´
´

´
´́
•

•

B′′

B′

Clip Plane

Inside Outside

Q
Q

Q
Q

Q
Q

Q
QQ´

´
´

´
´

´
´

´́

Figure 6.11: An illustration of clipping. The clipping plane is shown edge-on
and the depicted geometry straddles the clip plane. The geometry intersects
the clip plane at the points B′ and B′′. The geometry shown with bold lines is
clipped and removed.

When lines and triangles are clipped, new vertices are produced. Surface nor-
mals, texture coordinates, diffuse and specular colors are interpolated between
the two vertices along the intersected segment. In figure 6.11, the component
data for B′′ is a linear combination of the component data for B and C.

Direct3D provides several styles of clipping. User defined clip planes can
be specified by the application to clip geometry against arbitrary planes. Frus-
tum clipping is applied when the view volume is constructed. The view volume
is the volume of space that is shown by the camera and is described in chap-
ter 7. Guard band clipping is similar to view volume clipping and describes a
performance optimization available on some devices.

Some of the frame buffer operations, such as Z test, alpha test, stencil test
and some pixel shader operations can also be thought of as “clipping” operations.
However, these operate on the pixels produced by rasterizing a primitive, and
not on the geometry.

For sophisticated clipping requirements, an application can apply clipping
itself to vertices through the same intersection and linear interpolation used by
Direct3D.

When clipping is not enabled and primitives are drawn straddling the border,
then the entire primitive (point, line or triangle) is not drawn.

6.10.1 User Clip Planes

User-defined clip planes provide up to 6 arbitrary planes that can be used to
clip input geometry. Each plane is defined by a set of coefficients in a coordinate
system. User defined clip planes can be used with the fixed-function pipeline

222 CHAPTER 6. VERTEX TRANSFORMATIONS

and with programmable vertex processing. With fixed-function processing, the
plane’s coefficients are specified in world coordinates. For the programmable
vertex processing, the plane’s coefficients are specified in the output space of
vertices, see chapter 9.

The number of clip planes supported by a device is given by D3DCAPS9::-
MaxUserClipPlanes. Each clip plane is defined with four coefficients.

ax + by + cz + d = 0

The normal vector to the plane is the vector 〈a, b, c〉. This vector is not neces-
sarily a unit vector. The coefficient d fixes the plane to intersect with the point
(x0, y0, z0).

d = −(ax0 + by0 + cd0)

The clip planes are numbered 0 through 5. Their coefficients are stored as
an array of floats in the order a, b, c, d. The clip planes are manipulated with
GetClipPlane and SetClipPlane.

HRESULT GetClipPlane(DWORD index,
float *value);

HRESULT SetClipPlane(DWORD index,
const float *value);

Each user-defined clip plane can be independently enabled or disabled with
RS Clip Plane Enable. The ith clip plane is enabled when bit 2i of RS Clip Plane
Enable is set. Macros are provided for computing the bits.

#define D3DCLIPPLANE0 (1 << 0)
#define D3DCLIPPLANE1 (1 << 1)
#define D3DCLIPPLANE2 (1 << 2)
#define D3DCLIPPLANE3 (1 << 3)
#define D3DCLIPPLANE4 (1 << 4)
#define D3DCLIPPLANE5 (1 << 5)

D3DX provides a plane class that can be used for manipulating planes, see
chapter 16.

6.10.2 View Frustum Clipping

Primitives can be clipped against the view frustum when rendered. If RS Clip-
ping is TRUE, then clipping is enabled. On some devices, clipping can add a
considerable overhead. If the scene is entirely within the view frustum and does
not require clipping, then RS Clipping can be set to FALSE to avoid any clipping
computations.

When view frustum clipping or user defined clipping is enabled, the device
returns information about clipped primitives in the clip status property. While
primitives are processed, any primitive that intersects an enabled clipping plane
will set a bit in the clip status for the intersected plane. If a primitive is

6.10. CLIPPING 223

completely outside the view frustum, it does not intersect the view frustum and
is culled.

The clip status is manipulated with the GetClipStatus and SetClipStatus
methods. The clip status itself is stored in a D3DCLIPSTATUS9 structure.

HRESULT GetClipStatus(D3DCLIPSTATUS9 *value);
HRESULT SetClipStatus(const D3DCLIPSTATUS9 *value);

typedef struct _D3DCLIPSTATUS9
{

DWORD ClipUnion;
DWORD ClipIntersection;

} D3DCLIPSTATUS9;

The clip status accumulates information about clipping until it is reset. The
ClipUnion member has a bit set for any enabled clip plane that clipped all
vertices. The ClipIntersection member has a bit set for each clip plane that
clipped all primitives. The D3DDDDCS flags define individual bits for each of the
clip planes.

#define D3DCS_LEFT 0x00000001L
#define D3DCS_RIGHT 0x00000002L
#define D3DCS_TOP 0x00000004L
#define D3DCS_BOTTOM 0x00000008L
#define D3DCS_FRONT 0x00000010L
#define D3DCS_BACK 0x00000020L
#define D3DCS_PLANE0 0x00000040L
#define D3DCS_PLANE1 0x00000080L
#define D3DCS_PLANE2 0x00000100L
#define D3DCS_PLANE3 0x00000200L
#define D3DCS_PLANE4 0x00000400L
#define D3DCS_PLANE5 0x00000800L

6.10.3 Guard Band Clipping

Guard band clipping is similar to view frustum clipping, but it operates entirely
on pixels and not on model geometry. The guard band is an area enclosing
the current rendering viewport. Any primitives rendered outside the current
viewport but within the guard band will have their pixels discarded.

The guard band allows expensive geometry clipping tests and interpolation
to be skipped if it can be guaranteed that all geometry lies within the guard
band. If rendered geometry extends beyond the guard band, then view frustum
clipping must be used to clip the primitives.

The extent of the guard band is given by the GuardBandLeft, GuardBand-
Right, GuardBandTop and GuardBandBottom members of D3DCAPS9. The guard
band is given in screen space coordinates. To determine if a model is within
the guard band, the comparison must be made in the same coordinate frame.

224 CHAPTER 6. VERTEX TRANSFORMATIONS

Either the model must be mapped to screen space, or the guard band must be
mapped to world space.

6.11 Screen Space and the Viewport

The homogeneous divide and viewport application lie between the vertex and
screen space. After the world, view and projection transforms have been applied,
the vertices are homogeneous points (x, y, z, w) within the canonical view
volume:

−w ≤ x ≤ w
−w ≤ y ≤ w

0 ≤ z ≤ w

Dividing all the coordinates of the view volume by w gives a canonical view
volume in cartesian coordinates:

−1 ≤ x/w ≤ 1
−1 ≤ y/w ≤ 1

0 ≤ z/w ≤ 1

This produces the 1/w reciprocal homogeneous w term present in transformed
vertices with D3DFVF XYZRHW.

With the vertices in a normalized cartesian coordinate system, they are
ready for the final mapping into screen space. This mapping is defined by the
viewport. The viewport can restrict rendering to a subrectangle of the render
target, to a subinterval of the depth buffer, or both. The viewport is defined by
a rectangle in screen space that limits the xy extent of rendering and an interval
in [0, 1] that limits the extent of rendering in depth. The default viewport covers
the entire render target and the entire range of depth values. When the render
target is changed, the viewport is reset to cover the entire extent of the new
render target and the entire range of depth values.

The viewport mapping can also be written as a composite transformation
matrix:

M = S
(

w

2
,
h

2
, zf − zn

)
T(xs, ys, zn)

This transformation maps x from [0, 1] to [xs, xs+w], y from [0, 1] to [ys, ys+h],
and z from [0, 1] to [zn, zf]. Only the position vertex component is affected by
the viewport.

The viewport is manipulated with the GetViewport and SetViewport meth-
ods. The viewport itself is stored in a D3DVIEWPORT9 structure. The xy screen
extent is given by a rectangle with its upper left given by the X and Y members.
The Width and Height members give the dimensions of the viewport rectangle,
in pixels. The MinZ and MaxZ members give the portion of the depth buffer that
will be used.

HRESULT GetViewport(D3DVIEWPORT9 *value);
HRESULT SetViewport(const D3DVIEWPORT9 *value);

6.12. RT VERTEXBLEND SAMPLE APPLICATION 225

typedef struct _D3DVIEWPORT9
{

DWORD X;
DWORD Y;
DWORD Width;
DWORD Height;
float MinZ;
float MaxZ;

} D3DVIEWPORT9;

The range of z values allows an application to perform some visibility effects
with the depth buffer. For instance, the depth buffer can be cleared to 1.0, the
scene can be rendered in the range [0, 0.9] and a background can be rendered in
the range [0.9, 1.0]. This ensures that the background is behind all foreground
elements, but elements within the background still have a range of depth values
to use for occlusion among themselves.

Once the viewport has been applied, vertex processing is complete. The
screen-space vertices are then interpolated during rasterization to produce a
stream of pixels for integration into the render target.

6.12 rt VertexBlend Sample Application

The sample application is a modified version of the vertex blending sample in
the SDK. This sample was used to create figure 6.6 and figure 6.7. rt Vertex-
Blend was generated with the SDK framework using the AppWizard included
with the SDK, see appendix A.

The entire source code is included in the samples accompanying this book.
Listed here is rt VertexBlend.cpp, containing the “interesting” code of the
sample. Lines 50–77 check device capabilities for the skinning methods used
by the sample. Lines 257–323 compute the blend world matrices. An orienting
transformation is post-multiplied onto the blend matrices in lines 327–330. The
user can change the orienting transformation with the arrow keys on the key-
board. The blending weight for each vertex is computed in lines 440–474. The
x coordinate of the position component is normalized across the x extent of the
model and used as the input to a blend weight distribution function.

The sample uses small helper classes that encapsulate reusable Direct3D cod-
ing idioms. Their meaning should be straightforward and all such helper classes
are placed in the rt namespace to highlight their use. The mat classes con-
struct transformation matrices so that matrix expressions can be more readily
composed. The sample source code contains their definitions.

Listing 6.1: rt VertexBlend.cpp: Vertex blending.

1 //
2 // rt_VertexBlend.cpp

226 CHAPTER 6. VERTEX TRANSFORMATIONS

3 //
4 // A modification of the VertexBlend sample to demonstrate
5 // more clearly the effect of the blend weight distribution
6 // and transformation matrices on the result of vertex
7 // blending.
8 //
9

10 // C++ includes
11 #include <cmath>
12

13 // Win32 includes
14 #define STRICT
15 #define WIN32_LEAN_AND_MEAN
16 #include <windows.h>
17

18 // ATL includes
19 #include <atlbase.h>
20

21 // Direct3D includes
22 #include <d3dx9.h>
23

24 // D3DFrame includes
25 #include "DXUtil.h"
26 #include "D3DEnumeration.h"
27 #include "D3DSettings.h"
28 #include "D3DApp.h"
29 #include "D3DFont.h"
30 #include "D3DFile.h"
31 #include "D3DUtil.h"
32

33 // sample includes
34 #include "resource.h"
35 #include "rt_VertexBlend.h"
36

37 // rt includes
38 #include "rt/app.h"
39 #include "rt/hr.h"
40 #include "rt/mat.h"
41 #include "rt/media.h"
42 #include "rt/mesh.h"
43 #include "rt/misc.h"
44 #include "rt/states.h"
45 #include "rt/tstring.h"
46

47 //
48 // s_blend_vertex

6.12. RT VERTEXBLEND SAMPLE APPLICATION 227

49 //
50 // Vertex structure that includes a blend weight.
51 //
52 struct s_blend_vertex // Referenced in the shader as:
53 {
54 D3DXVECTOR3 v; // v0
55 float blend; // v1.x
56 D3DXVECTOR3 n; // v3
57 float tu, tv; // v7
58

59 static const DWORD FVF;
60 };
61 const DWORD s_blend_vertex::FVF =
62 D3DFVF_XYZB1 | D3DFVF_NORMAL | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0);
63

64 //
65 // ConfirmDevice()
66 //
67 // Validate both vertex blending and vertex shader caps
68 // and set available application options accordingly.
69 // Check that the device supports at least one of the
70 // two techniques used in this sample: either a vertex
71 // shader, or at least two blend matrices and a
72 // directional light.
73 //
74 HRESULT
75 CMyD3DApplication::ConfirmDevice(D3DCAPS9 *caps,
76 DWORD dwBehavior, D3DFORMAT)
77 {
78 if (dwBehavior & D3DCREATE_SOFTWARE_VERTEXPROCESSING)
79 {
80 // Software vertex processing always supports what
81 // we need
82 return S_OK;
83 }
84

85 if (caps->VertexShaderVersion >= D3DVS_VERSION(1,0))
86 {
87 // HW device supports a vertex shader
88 return S_OK;
89 }
90

91 // Fixed-function HAL:
92 // Check for vertex blending with at least two matrices
93 // (Software can always do up to 4 blend matrices)
94 if (caps->MaxVertexBlendMatrices < 2)

228 CHAPTER 6. VERTEX TRANSFORMATIONS

95 {
96 return E_FAIL;
97 }
98

99 // check for directional lights
100 if (!(caps->VertexProcessingCaps &
101 D3DVTXPCAPS_DIRECTIONALLIGHTS))
102 {
103 return E_FAIL;
104 }
105

106 return S_OK;
107 }
108

109 //
110 // InitDeviceObjects()
111 //
112 // Load the mesh and adjust behavior of app to follow caps
113 // of the device.
114 //
115 HRESULT CMyD3DApplication::InitDeviceObjects()
116 {
117 // Init the font
118 THR(m_font.InitDeviceObjects(m_pd3dDevice));
119

120 // Load an object to render
121 if (FAILED(m_mesh.Create(m_pd3dDevice,
122 _T("mslogo.x"))))
123 {
124 return D3DAPPERR_MEDIANOTFOUND;
125 }
126 // Set a custom FVF for the mesh
127 m_mesh.SetFVF(m_pd3dDevice, s_blend_vertex::FVF);
128

129 // compute bounding box
130 {
131 CComPtr<ID3DXMesh> mesh = m_mesh.GetSysMemMesh();
132 rt::mesh_vertex_lock<D3DXVECTOR3> lock(mesh);
133 THR(::D3DXComputeBoundingBox(lock.data(),
134 mesh->GetNumVertices(), sizeof(s_blend_vertex),
135 &m_mesh_bounds.m_min, &m_mesh_bounds.m_max));
136 }
137

138 // adjust behavior to follow caps
139 if ((m_dwCreateFlags &
140 (D3DCREATE_HARDWARE_VERTEXPROCESSING |

6.12. RT VERTEXBLEND SAMPLE APPLICATION 229

141 D3DCREATE_MIXED_VERTEXPROCESSING)) &&
142 m_d3dCaps.VertexShaderVersion < D3DVS_VERSION(1,0))
143 {
144 // No vertex shaders
145 m_use_vertex_shader = false;
146 rt::enable_menu(::GetMenu(m_hWnd),
147 ID_OPTIONS_USECUSTOMVERTEXSHADER, false);
148 }
149 else if (m_d3dCaps.MaxVertexBlendMatrices < 2)
150 {
151 // No blend matrices available
152 m_use_vertex_shader = true;
153 rt::enable_menu(::GetMenu(m_hWnd),
154 ID_OPTIONS_USECUSTOMVERTEXSHADER, false);
155 }
156 else
157 {
158 // Both techniques available
159 m_use_vertex_shader = false;
160 rt::enable_menu(::GetMenu(m_hWnd),
161 ID_OPTIONS_USECUSTOMVERTEXSHADER, true);
162 }
163

164 compute_weights();
165

166 // if we can use vertex shaders, create the shader now
167 if ((m_dwCreateFlags & D3DCREATE_SOFTWARE_VERTEXPROCESSING)
168 || m_d3dCaps.VertexShaderVersion >= D3DVS_VERSION(1,0))
169 {
170 rt::tstring filename = rt::find_media(_T("Blend.vsh"));
171

172 // Assemble the vertex shader from the file
173 rt::dx_buffer<DWORD> code;
174 #if defined(DEBUG) || defined(_DEBUG)
175 #define RT_SHADER_DEBUG D3DXSHADER_DEBUG
176 #else
177 #define RT_SHADER_DEBUG 0
178 #endif
179 THR(::D3DXAssembleShaderFromFile(filename.c_str(),
180 NULL, NULL, RT_SHADER_DEBUG, &code, NULL));
181 #undef RT_SHADER_DEBUG
182

183 // Create the vertex shader
184 THR(m_pd3dDevice->CreateVertexShader(code,
185 &m_vertex_shader));
186 }

230 CHAPTER 6. VERTEX TRANSFORMATIONS

187

188 return S_OK;
189 }
190

191 //
192 // RestoreDeviceObjects()
193 //
194 // Restore the mesh, cached mesh data, and other device
195 // state.
196 //
197 HRESULT CMyD3DApplication::RestoreDeviceObjects()
198 {
199 // Restore mesh’s local memory objects
200 m_mesh.RestoreDeviceObjects(m_pd3dDevice);
201

202 // Get access to the mesh vertex and index buffers
203 {
204 CComPtr<ID3DXMesh> mesh = m_mesh.GetLocalMesh();
205 THR(mesh->GetVertexBuffer(&m_vertices));
206 THR(mesh->GetIndexBuffer(&m_indices));
207 m_num_vertices = mesh->GetNumVertices();
208 m_num_faces = mesh->GetNumFaces();
209 }
210

211 // Set miscellaneous render states
212 const rt::s_rs states[] =
213 {
214 D3DRS_ZENABLE, true,
215 D3DRS_AMBIENT, D3DCOLOR_XRGB(64, 64, 64),
216 D3DRS_LIGHTING, true
217 };
218 rt::set_states(m_pd3dDevice, states, NUM_OF(states));
219

220

221 // Set the projection matrix
222 const float aspect = float(m_d3dsdBackBuffer.Width) /
223 m_d3dsdBackBuffer.Height;
224 ::D3DXMatrixPerspectiveFovLH(&m_projection, D3DX_PI/4,
225 aspect, 1.0f, 10000.0f);
226 THR(m_pd3dDevice->SetTransform(D3DTS_PROJECTION,
227 &m_projection));
228

229 // look_at(eye, look at, view up)
230 m_view = rt::mat_look_at(D3DXVECTOR3(0.0f, -5.0f, -10.0f),
231 D3DXVECTOR3(0.0f, 0.0f, 0.0f),
232 D3DXVECTOR3(0.0f, 1.0f, 0.0f));

6.12. RT VERTEXBLEND SAMPLE APPLICATION 231

233 THR(m_pd3dDevice->SetTransform(D3DTS_VIEW, &m_view));
234

235 // Create a directional light
236 D3DLIGHT9 light;
237 ::D3DUtil_InitLight(light, D3DLIGHT_DIRECTIONAL,
238 -0.5f, -1.0f, 1.0f);
239 const float intensity = 0.9f;
240 light.Diffuse.r = intensity;
241 light.Diffuse.g = intensity;
242 light.Diffuse.b = 0;
243 THR(m_pd3dDevice->SetLight(0, &light));
244 THR(m_pd3dDevice->LightEnable(0, true));
245

246 // Restore the font
247 m_font.RestoreDeviceObjects();
248

249 return S_OK;
250 }
251

252 //
253 // FrameMove()
254 //
255 // Change the world matrix over time; each transformation
256 // corresponds to a menu item.
257 //
258 HRESULT CMyD3DApplication::FrameMove()
259 {
260 // Update user input state
261 UpdateInput();
262

263 // Update the model rotation state
264 {
265 if (m_input.m_left && !m_input.m_right)
266 {
267 m_rot_y += m_fElapsedTime;
268 }
269 else if (m_input.m_right && !m_input.m_left)
270 {
271 m_rot_y -= m_fElapsedTime;
272 }
273 if (m_input.m_up && !m_input.m_down)
274 {
275 m_rot_x += m_fElapsedTime;
276 }
277 else if (m_input.m_down && !m_input.m_up)
278 {

232 CHAPTER 6. VERTEX TRANSFORMATIONS

279 m_rot_x -= m_fElapsedTime;
280 }
281 }
282

283 // Set the vertex blending matrices for this frame
284 switch (m_xform)
285 {
286 case SKIN_TR_AXIS_ROTATION:
287 {
288 // rotate around an oscillating axis
289 const D3DXVECTOR3 axis(
290 2.f + std::sinf(3.1f*m_fTime),
291 2.f + std::sinf(3.3f*m_fTime),
292 std::sinf(3.5f*m_fTime));
293 ::D3DXMatrixRotationAxis(&m_lower_arm,
294 &axis, std::sinf(3*m_fTime));
295 }
296 break;
297

298 case SKIN_TR_CENTER_SCALING:
299 {
300 // scale about mesh center
301 const D3DXVECTOR3 center = 0.5f*
302 (m_mesh_bounds.m_min + m_mesh_bounds.m_max);
303 const float s = 0.75f + 0.5f*std::sinf(3*m_fTime);
304 m_lower_arm = rt::mat_trans(-center)*
305 rt::mat_scale(s)*
306 rt::mat_trans(center);
307 }
308 break;
309

310 case SKIN_TR_Y_TRANSLATE:
311 // Y-axis translation
312 ::D3DXMatrixTranslation(&m_lower_arm,
313 0.0f, 3*std::sinf(3*m_fTime), 0.0f);
314 break;
315

316 case SKIN_TR_AXIS_ROTATION_LEFT:
317 {
318 // rotate around an oscillating axis about
319 // the mesh’s minimum
320 const D3DXVECTOR3 axis(
321 2.f + std::sinf(3.1f*m_fTime),
322 2.f + std::sinf(3.3f*m_fTime),
323 std::sinf(3.5f*m_fTime));
324 m_lower_arm =

6.12. RT VERTEXBLEND SAMPLE APPLICATION 233

325 rt::mat_trans(-m_mesh_bounds.m_min)*
326 rt::mat_rot_axis(axis, std::sinf(3*m_fTime))*
327 rt::mat_trans(m_mesh_bounds.m_min);
328 }
329 break;
330

331 case SKIN_TR_Y_ROTATION_LEFT:
332 {
333 // Y-axis rotation around min_x of mesh
334 m_lower_arm =
335 rt::mat_trans(-m_mesh_bounds.m_min)*
336 rt::mat_rot_y(D3DX_PI/4.0f +
337 D3DX_PI*std::sinf(3*m_fTime)/8.0f)*
338 rt::mat_trans(m_mesh_bounds.m_min);
339 }
340 break;
341

342 case SKIN_TR_Y_ROTATION_CENTER:
343 {
344 // Y-axis rotation around center of mesh
345 const D3DXVECTOR3 center = 0.5f*
346 (m_mesh_bounds.m_min + m_mesh_bounds.m_max);
347 m_lower_arm = rt::mat_trans(-center)*
348 rt::mat_rot_y(D3DX_PI/4.0f +
349 D3DX_PI*std::sinf(3*m_fTime)/8.0f)*
350 rt::mat_trans(center);
351 }
352 break;
353 }
354 ::D3DXMatrixIdentity(&m_upper_arm);
355

356 // post-multiply orientation transformation onto
357 // blend transformation
358 const D3DXMATRIX rot = rt::mat_rot_x(m_rot_x)*
359 rt::mat_rot_y(m_rot_y);
360 m_upper_arm *= rot;
361 m_lower_arm *= rot;
362

363 // Set the vertex shader constants.
364 if (m_use_vertex_shader)
365 {
366 // Some basic constants
367 const D3DXVECTOR4 zero(0,0,0,0);
368 const D3DXVECTOR4 one(1,1,1,1);
369

370 // Lighting vector (normalized) and material colors.

234 CHAPTER 6. VERTEX TRANSFORMATIONS

371 // (Use red light to show difference from non-vertex
372 // shader case.)
373 D3DXVECTOR4 light_dir(0.5f, 1.0f, -1.0f, 0.0f);
374 ::D3DXVec4Normalize(&light_dir, &light_dir);
375 const float diffuse[] = { 1.00f, 1.00f, 0.00f, 0.00f };
376 const float ambient[] = { 0.25f, 0.25f, 0.25f, 0.25f };
377

378 // compute transposed matrices used by the shader
379 const D3DXMATRIX view_proj = m_view * m_projection;
380

381 // Set the vertex shader constants; the shader uses
382 // matrices with rows/columns reversed from D3DMATRIX,
383 // so compute transpose of matrix before storing
384 #define SVSC(addr_, data_, num_) \
385 THR(m_pd3dDevice->SetVertexShaderConstantF(addr_, data_, num_))
386 SVSC(0, zero, 1);
387 SVSC(1, one, 1);
388 D3DXMATRIX transpose;
389 ::D3DXMatrixTranspose(&transpose, &m_upper_arm);
390 SVSC(4, transpose, 4);
391 ::D3DXMatrixTranspose(&transpose, &m_lower_arm);
392 SVSC(8, transpose, 4);
393 ::D3DXMatrixTranspose(&transpose, &view_proj);
394 SVSC(12, transpose, 4);
395 SVSC(20, light_dir, 1);
396 SVSC(21, diffuse, 1);
397 SVSC(22, ambient, 1);
398 #undef SVSC
399 }
400

401 return S_OK;
402 }
403

404 //
405 // Render()
406 //
407 // Set either vertex shader or vertex blend state, then
408 // draw mesh. Draw stats if requested.
409 //
410 HRESULT CMyD3DApplication::Render()
411 {
412 // Clear the viewport
413 THR(m_pd3dDevice->Clear(0L, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
414 D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0L));
415

416 THR(m_pd3dDevice->BeginScene());

6.12. RT VERTEXBLEND SAMPLE APPLICATION 235

417

418 if (m_use_vertex_shader)
419 {
420 THR(m_pd3dDevice->SetFVF(s_blend_vertex::FVF));
421 THR(m_pd3dDevice->SetVertexShader(m_vertex_shader));
422 THR(m_pd3dDevice->SetStreamSource(0, m_vertices, 0,
423 sizeof(s_blend_vertex)));
424 THR(m_pd3dDevice->SetIndices(m_indices));
425 THR(m_pd3dDevice->DrawIndexedPrimitive(
426 D3DPT_TRIANGLELIST, 0, 0, m_num_vertices,
427 0, m_num_faces));
428 }
429 else
430 {
431 // Enable vertex blending using API
432 THR(m_pd3dDevice->SetVertexShader(NULL));
433 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD,
434 &m_upper_arm));
435 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD1,
436 &m_lower_arm));
437 THR(m_pd3dDevice->SetRenderState(D3DRS_VERTEXBLEND,
438 D3DVBF_1WEIGHTS));
439

440 // Display the object
441 m_mesh.Render(m_pd3dDevice);
442 }
443

444 // Output statistics
445 if (m_show_stats)
446 {
447 RenderText();
448 }
449

450 THR(m_pd3dDevice->EndScene());
451

452 return S_OK;
453 }
454

455 //
456 // compute_weights
457 //
458 // Add blending weights to the mesh based on m_weight_dist.
459 // Weights are distributed along the x-axis of the model.
460 //
461 void
462 CMyD3DApplication::compute_weights()

236 CHAPTER 6. VERTEX TRANSFORMATIONS

463 {
464 // Gain acces to the mesh’s vertices
465 rt::mesh_vertex_lock<s_blend_vertex>
466 lock(m_mesh.GetSysMemMesh());
467 s_blend_vertex *verts = lock.data();
468

469 // Set the blend factors for the vertices
470 const UINT num_vertices =
471 m_mesh.GetSysMemMesh()->GetNumVertices();
472 for (UINT i = 0; i < num_vertices; i++)
473 {
474 // find fraction along x-axis extent for this vertex
475 const float a =
476 (verts[i].v.x - m_mesh_bounds.m_min.x) /
477 (m_mesh_bounds.m_max.x - m_mesh_bounds.m_min.x);
478

479 // apply weight distribution function
480 switch (m_weight_dist)
481 {
482 case SKIN_WD_SINUSOIDAL:
483 verts[i].blend = 1.0f - std::sinf(a*D3DX_PI);
484 break;
485

486 case SKIN_WD_TRIANGLE:
487 verts[i].blend =
488 a <= 0.5f ? 2.0f*a : 1.0f - 2*(a-0.5f);
489 break;
490

491 case SKIN_WD_BRACKETED:
492 verts[i].blend =
493 (a < 0.3f) ? 0.0f : ((a > 0.7f) ? 1.0f :
494 (a-0.3f)/0.4f);
495 break;
496

497 case SKIN_WD_INVERTED_FRACTION:
498 verts[i].blend = 1.0f - a;
499 break;
500

501 case SKIN_WD_FRACTION:
502 verts[i].blend = a;
503 break;
504

505 case SKIN_WD_SIGMOIDAL:
506 verts[i].blend =
507 1.0f/(1.0f + expf(-25.0f*(a-0.5f)));
508 break;

6.13. FURTHER READING 237

509 }
510 }
511 }

6.13 Further Reading

Transformations of Surface Normal Vectors, by Ken Turkowski, Apple Tech-
nical Report #22, July 6th, 1990.
Abstract: Given an affine 4x4 modeling transformation matrix, we derive
the matrix that represents the transformation of a surfaces normal vectors.
This is similar to the modeling matrix only when any scaling is isotropic.
We further derive results for transformations of light direction vectors and
shading computations in clipping space.

238 CHAPTER 6. VERTEX TRANSFORMATIONS

