
Chapter 7

Viewing and Projection

“The eye is not satisfied with seeing.”
Ecclesiastes I, 8, c. 200 B.C.

7.1 Overview

Viewing and projection map a portion of a three dimensional scene to a two
dimensional portion of the render target. Viewing positions and orients a virtual
camera within the scene. Projection maps a three dimensional portion of the
scene to a two dimensional plane.

Direct3D applications use a planar geometric projection. A planar geo-
metric projection of an object is formed by lines, called projectors, which pass
through each vertex of an object and the center of projection. When the
center of projection is finite, all projectors converge at the center of projection
resulting in a perspective projection. When the center of projection is at infin-
ity, all the projectors are parallel lines resulting in a parallel projection. The
projected object is located on the projection plane. Each projected vertex is
located at the intersection of its projector with the projection plane.

Planar geometric projections have a long history in art and engineering il-
lustration. A perspective projection produces images that are similar to those
created by the human eye and are considered more realistic in appearance. How-
ever, a perspective projection distorts the length and intersection angles of lines
not parallel to the projection plane. The distortion makes objects closer to the
virtual camera appear larger in the image than objects far away. This distortion
is the result of nonuniform perspective foreshortening.

A parallel projection can preserve relative line lengths and angles of intersec-
tion. The length preserving property of parallel projections makes them useful
for engineering drawings. Multiple parallel projections of an object illustrate
its shape and manufacture as measurements can be taken directly from the
projection.

239

240 CHAPTER 7. VIEWING AND PROJECTION

Figure 7.1: Viewing

For objects with three principal perpendicular axes, projections can be fur-
ther classified. The relative orientation of the projectors, the projection plane
and the principal axes of the object define the classification. Parallel projec-
tions are sudbivided into orthographic and oblique projections. Orthographic
parallel projections are further classified into axonometric, isometric, dimetric,
and trimetric projections. Cavalier and cabinet projections are common oblique
parallel projections. Perspective projections can be subdivided into one point,
two point and three point perspective projections.

Direct3D uses planar geometric projections that can be defined by a homo-
geneous transformation matrix. Other projections are possible, but not directly
representable by Direct3D. Cartography uses a variety of projections for map-
ping between the surface of an ellipsoid and a plane. Alternative projections can
be applied to vertex data before it is presented for rendering by the pipeline.
In addition to the standard cartographic projections, points on the ellipsoid
can be directly represented in world coordinates and Direct3D can perform a
perspective or parallel projection of the resulting three dimensional shape.

Motion of the camera through a scene can be achieved by changing the
camera parameters over time. Changes in camera position and orientation are
most readily obtained by changing the view transformation matrix. The portion
of the scene shown by the virtual camera is most readily obtained by changing
the projection transformation matrix.

7.2 Viewing Through a Virtual Camera

Direct3D uses a model of a virtual camera to construct a rendering of a scene.
The camera is conceptually positioned and oriented in world coordinates. The
camera is pointed in a particular direction, the direction of gaze, as in fig-
ure 7.1. The position and orientation of the camera in the scene defines a new
coordinate frame relative to world coordinates. This coordinate frame is called
camera space, or eye space as if an eye were looking through the camera.

All the models in a scene are in world coordinates after their vertices have
been mapped by the world transformation. The view transformation maps

7.2. VIEWING THROUGH A VIRTUAL CAMERA 241

vertices from world coordinates to camera space. Camera space orients the
camera at the origin with the line of sight down the positive z axis, y increasing
upward and x increasing to the right.

With a left-handed coordinate system, the z value will increase with dis-
tance from the camera. Increasing x values will move toward the right side of
the rendered image and increasing y values will move towards the top of the ren-
dered image. Note that y is increasing upwards in camera space, but increases
downwards in screen space.

To define a view transformation, start with a camera model. As far as
Direct3D is concerned the camera model is only a transformation matrix. For
an application, its easier to define a camera model with some parameters and
generate the matrix from the parameters.

A simple camera model is to keep the camera located at C(xc, yc, zc). The
camera is pointed at some point A(xa, ya, za) in the scene. The direction of gaze
of the camera is then #»g = 〈xa−xc, ya−yc, za−zc〉. While keeping direction of
gaze fixed, we can rotate the camera by θ around #»g in the plane perpendicular
to #»g . The camera is oriented with an “up” vector #»u in the plane perpendicular
to #»g .

With this model, the view transformation maps world coordinates so that the
origin is at C, the positive z axis is aligned with the direction #»g and the positive
y axis of the image plane is aligned with #»u . See figure 7.1 for an illustration of
the parameters. The model can be represented as a transformation matrix by
a composite transformation V.

V = T(−C)Rg→zRz(θ)

The transformation matrix Rg→z is a pure rotation that rotates #»g to the positive
z axis.

The relationship between the parameters in this camera model is redundant.
An application can store C and A and derive #»g . Similarly, an application can
store θ and derive #»u .

The view transform property of the device is manipulated through the D3D-
TS VIEW argument to GetTransform and SetTransform. The view transform
defaults to an identity matrix, which makes camera space coordinates identical
to the world space coordinates. Some applications prefer to include the view
transformation in the world matrix, using an identity view matrix. D3DX in-
cludes the functions for generating view transformation matrices, see chapter 16.

The camera can be dynamically moved through the scene by changing the
transformation. Repeatedly accumulating matrices through post-multiplication
for incremental camera movement suffers from numerical roundoff error. By
keeping a camera model from which we generate the matrix, we avoid this
problem with matrices, but it can still crop up with the floating-point variables
containing our camera parameters. If the matrix is known not to contain any
skew transformations, it can be renormalized. The rotation portion of a homo-
geneous transformation matrix is modified so that the axes of rotation are all
mutually perpendicular to correct any introduced skew.

242 CHAPTER 7. VIEWING AND PROJECTION

Planar Geometric Projections
Parallel

Orthographic
Multiview Orthographic
Axonometric

Isometric
Dimetric
Trimetric

Oblique
Cavalier
Cabinet

Perspective
One Point
Two Point
Three Point

-
-

-

-

-

-

Figure 7.2: Taxonomy of planar geometric projections. A multiview ortho-
graphic projection is not a single projection, but a group of orthographic views
of the same scene. Typically each view is chosen parallel to one of the principal
axes with names such as top, bottom, front, back, left side, and right side.

Quaternions are a convenient representation for orienting transformations.
Direct3D core interfaces don’t use quaternions directly, but D3DX provides
a quaternion data type that can be used to manipulate and define orienting
transformations, see chapter 16.

7.3 Planar Geometric Projections

A planar geometric projection is characterized by its projection plane and
its center of projection. A line through a point in the scene and the center
of projection is a projector. Planar geometric projections for artistic and
functional uses have a long history in the visual arts. The taxonomy of planar
geometric projections is shown in figure 7.2.

7.3.1 Parallel Projections

A parallel projection results when the center of projection is located at in-
finity. All the projectors will effectively be parallel to each other. Parallel
projections preserve the length of lines within a model and provide uniform
foreshortening. This can result in an image that doesn’t look realistic, in con-
trast to the image taken by a camera or seen with the human eye. However,
the resulting projection does allow for measurements to be made directly from
the rendered image. For this reason, parallel projections are often used in engi-
neering drawings.

7.3. PLANAR GEOMETRIC PROJECTIONS 243

Parallel projections can be subdivided into orthographic and oblique par-
allel projections. In an orthographic projection, the projectors are all perpendic-
ular to the projection plane, while in an oblique parallel projection the projectors
intersect the projection plane at an angle.

Orthographic Parallel Projections

Orthographic projections are probably the most common form of parallel pro-
jection. An orthographic parallel projection is most often used to illustrate
an object in a static engineering drawing and the object usually has a natu-
ral coordinate system with three principal perpendicular axes. For example,
most computer cases are shaped like a box, with three natural coordinate axes
defining the width, height and depth of the case.

Because orthographic projections do not provide realistic views of an object,
multiple projections of the same object are often used to provide a clear illus-
tration of a complex object. “Front”, “side” and “plan” orthographic views of
an object are commonly used to illustrate an object from three sides in order
to clearly show its three-dimensional shape.

An orthographic projection which projects an object into a single projection
plane is called an axonometric projection. The choice of the projection plane
is made to illustrate the general shape of the object without ambiguity.

Axonometric projections are further distinguished by the relationship of the
projection plane to the three principal axes of the depicted object. When all
the principal axes of the object intersect the projection plane with the same
angle, an isometric projection results. If two of the principal axes intersect the
projection plane at the same angle, while the remaining principal axis intersects
at a different angle, then a dimetric projection results. When all three angles
of intersection are different, a trimetric projection results.

Oblique Parallel Projections

While orthographic projections preserve an object’s shape, they often make it
difficult to visualize the three dimensional shape of an object. Multiview ortho-
graphic projections can make up for this by showing an object from two or more
views, but it may still be hard to visualize the object’s shape from the multi-
ple views. An oblique parallel projection provides an illustration of the general
three-dimensional shape of an object while providing an exact representation of
one of the object’s faces.

An oblique parallel projection is characterized by the orientation of the pro-
jection plane relative to the object, the angle of the projectors relative to the
projection plane and the orientation of the projectors about the projection plane
normal. Usually the projection plane is chosen to be parallel to the most im-
portant face of the object and the angle of the projectors is chosen to give a
realistic appearance to the third dimension of the object.

A cavalier projection results when the angle of the projectors to the pro-
jection plane is 45 degrees. A cabinet projection results when the angle of the

244 CHAPTER 7. VIEWING AND PROJECTION

projectors is cot−1(1
2), or approximately 64 degrees. A cavalier projection does

not foreshorten lines perpendicular to the primary face of the object, while a
cabinet projection provides a sense of three dimensional appearance of an object
with uniform foreshortening.

7.3.2 Perspective Projections

A perspective projection results when the center of projection is finite. The
projectors then pass through points in the object and converge on the center of
projection. This results in several visual effects in the projected image:

1. Parallel lines not in a plane parallel to the projection plane will appear to
converge at a vanishing point.

2. Objects appear to change their size depending on their distance from the
center of projection.

3. Objects are foreshortened nonuniformly.

As with parallel projections, perspective projections can be further subdi-
vided based on the relationship of the projection plane to the principal axes
of a depicted object. A one-point perspective projection results when the
projection plane intersects a single principal axis of the object. In this case, the
projection plane is parallel to one of the principal faces of the depicted object.
Similarly, a two-point perspective projection results when the projection
plane intersects two of the principal axes of the object and a three-point per-
spective projection results when the projection plane intersects all three of the
principal axes.

7.4 Projection Transformation

In computer graphics we are often interested in dynamic views where the objects
within the scene and the camera may both move freely in response to user
interaction. In these situations, the distinctions between these different kinds of
parallel or perspective projections are not that important since objects within
the scene are likely to be at arbitrary orientations relative to the projection
plane. The most common choice made is one between a parallel or perspective
projection.

For instance, in a first-person-shooter style game, the player’s view is most
often shown with a perspective projection. A parallel projection may still be
used for map displays where it is important to preserve the exact shape of the
rendered primitives.

The projection transform property of the device is manipulated through the
D3DTS PROJECTION argument to GetTransform and SetTransform. The projec-
tion transform defaults to an identity matrix, resulting in a parallel projection.

7.4. PROJECTION TRANSFORMATION 245

7.4.1 Projection Matrices

So far, the matrices we have examined have not used the rightmost column
of the matrix. These elements are used for applying a perspective projection.
To see how this results, let’s take a look at the equations for transforming a
point P = 〈x, y, z, w〉 by a matrix M resulting in a transformed point P ′ =
〈x′, y′, z′, w′〉, where M is an identity matrix with unknown elements in the
rightmost column:

P ′ = PM

= 〈x, y, z, w〉




1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 m44




x′ = x

y′ = y

z′ = z

w′ = xm14 + ym24 + zm34 + wm44

When P ′ is converted to a cartesian coordinate, its x, y and z coordinates
will be divided by its w coordinate. Usually, w′ would have the value of one
and this division wouldn’t change the cartesian position of the point, but when
the rightmost column of the matrix contains non-zero elements, w will have a
value other than one and the cartesian coordinate will change accordingly.

For instance, suppose we have a perspective transformation matrix:



1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1




This will result in a transformed w coordinate equal to the z coordinate of
the original point. When the point is converted from a homogeneous coordinate
system to a cartesian coordinate system, the x, y, and z values will be divided by
z + w from the original point. This is what causes the non-uniform perspective
foreshortening in a perspective projection.

The projection transformation matrix should map the desired view frustum
into the canonical view frustum:

−w ≤ x ≤ w
−w ≤ y ≤ w

0 ≤ z ≤ w

If your application uses a right-handed coordinate system for world and camera
space, you should include the conversion to a left-handed coordinate system in
the projection matrix.

246 CHAPTER 7. VIEWING AND PROJECTION

D3DX provides functions for computing parallel and perspective projection
matrices, see chapter 15. You can also compute your own projection matrices
directly from the relationship of your desired view frustum to the canonical
view frustum. Direct3D requires that the m34 element be normalized to 1 for
perspective transformation matrices. If your computations result in a non-zero
m34 element, you can multiply all the elements of the matrix the reciprocal of
m34 to meet this requirement.

7.5 Further Reading

Projections have a long history in the visual arts and scientific or engineering
illustration. In computer graphics, the most common choice is between a sim-
ple orthographic or perspective projection, but occasionally the need arises for
something more elaborate.

Planar Geometric Projections and Viewing Transformations, I. Carlbom and
J. Paciorek, Computing Surveys, 1(4), 1978, pp. 465-502.
A detailed description of the history of planar geometric projections and
the derivation of their projection matrices.

Map Projections–A Working Manual, John P. Snyder, U.S. Geological Sur-
vey Professional Paper 1395, United States Government Printing Office,
Washington, D.C., 1987.
An encyclopedic collection of projection formulas and ancilliary data for
use in cartography.

7.6 rt Views Sample Application

The following sample application shows an example of multiple views within
a render target, with each view having a different viewport, view matrix and
projection matrix. rt Views was generated with the SDK framework using the
AppWizard included with the SDK, see appendix A.

The entire source code is included in the samples. Listed here is rt Views.cpp,
containing the “interesting” code of the sample. The sample computes perspec-
tive and orthographic view matrices that enclose a portion of model space.
The aspect ratio of the view frustum is chosen to enclose the mesh snugly in
lines 30–40. The differing view and projection matrices for the four views is
computed in lines 334–353 using some helper functions for the perspective and
orthographic view matrices. The viewport sizes are initialized in lines 147–159
of the RestoreDeviceObjects method. Each viewport is set for the appropriate
view in lines 322–328 of the set view method.

The sample uses small helper classes that encapsulate reusable Direct3D cod-
ing idioms. Their meaning should be straightforward and all such helper classes
are placed in the rt namespace to highlight their use. The mat classes con-
struct transformation matrices so that matrix expressions can be more readily
composed. The sample source code contains their definitions.

7.6. RT VIEWS SAMPLE APPLICATION 247

Listing 7.1: rt Views.cpp: Drawing multiple views in a single render target.

1 //
2 // rt_Views.cpp
3 //
4 // Demonstrates multiple views of a scene using viewports.
5 //
6 #include <algorithm>
7

8 #define STRICT
9 #include <windows.h>

10

11 #include <atlbase.h>
12

13 #include <d3dx9.h>
14

15 #include "DXUtil.h"
16 #include "D3DEnumeration.h"
17 #include "D3DSettings.h"
18 #include "D3DApp.h"
19 #include "D3DFont.h"
20 #include "D3DUtil.h"
21

22 #include "resource.h"
23 #include "rt_Views.h"
24

25 #include "rt/hr.h"
26 #include "rt/mat.h"
27 #include "rt/misc.h"
28 #include "rt/states.h"
29

30 //
31 // compute_size
32 //
33 // Helper function to adjust the xy dimensions of the view
34 // volume for the back buffer aspect ratio.
35 //
36 inline void
37 compute_size(float model_width, float model_height,
38 float back_aspect,
39 float &proj_width, float &proj_height)
40 {
41 const float model_aspect = model_width/model_height;
42 if (back_aspect > model_aspect)
43 {
44 proj_height = model_height;

248 CHAPTER 7. VIEWING AND PROJECTION

45 proj_width = proj_height*back_aspect;
46 }
47 else
48 {
49 proj_width = model_width;
50 proj_height = proj_width/back_aspect;
51 }
52 }
53

54 //
55 // mat_persp_ratios
56 //
57 // Compute a perspective projection matrix that encloses
58 // the model in a back buffer of the given aspect ratio.
59 //
60 class mat_persp_ratios : public D3DXMATRIX
61 {
62 public:
63 mat_persp_ratios(float model_x, float model_y,
64 float back_aspect)
65 {
66 float w, h;
67 compute_size(model_x, model_y, back_aspect, w, h);
68 ::D3DXMatrixPerspectiveLH(this, w/4, h/4,
69 1.0f, 10.0f);
70 }
71 };
72

73 //
74 // mat_ortho_ratios
75 //
76 // Compute an orthographic projection matrix that encloses
77 // the model in a back buffer of the given aspect ratio.
78 //
79 class mat_ortho_ratios : public D3DXMATRIX
80 {
81 public:
82 mat_ortho_ratios(float model_x, float model_y,
83 float back_aspect)
84 {
85 float w, h;
86 compute_size(model_x, model_y, back_aspect, w, h);
87 ::D3DXMatrixOrthoLH(this, w, h, 1.0f, 10.0f);
88 }
89 };
90

7.6. RT VIEWS SAMPLE APPLICATION 249

91 //
92 // CMyD3DApplication::RestoreDeviceObjects()
93 //
94 // Calculate the sizes of the four views based on the size
95 // of the back buffer. Set a simple light and material
96 // properties for the scene.
97 //
98 HRESULT CMyD3DApplication::RestoreDeviceObjects()
99 {

100 const DWORD w = m_d3dsdBackBuffer.Width;
101 const DWORD h = m_d3dsdBackBuffer.Height;
102 const s_view views[NUM_VIEWS] =
103 {
104 { 0, 0, w, h, D3DCOLOR_XRGB(68, 68, 68) },
105 { 0, 0, w/2, h/2, D3DCOLOR_XRGB(0, 0, 0) },
106 { w/2, 0, w-(w/2), h/2, D3DCOLOR_XRGB(0, 68, 0) },
107 { 0, h/2, w/2, h-(h/2), D3DCOLOR_XRGB(0, 0, 68) },
108 { w/2, h/2, w-(w/2), h-(h/2),
109 D3DCOLOR_XRGB(68, 0, 0) }
110 };
111 ATLASSERT(sizeof(views) == sizeof(m_views));
112 std::copy(&views[0], &views[NUM_VIEWS], &m_views[0]);
113

114 // Setup a material
115 D3DMATERIAL9 mtrl;
116 ::D3DUtil_InitMaterial(mtrl, 1.0f, 1.0f, 0.0f);
117 THR(m_pd3dDevice->SetMaterial(&mtrl));
118

119 // Set miscellaneous render states
120 const rt::s_rs states[] =
121 {
122 D3DRS_DITHERENABLE, false,
123 D3DRS_SPECULARENABLE, false,
124 D3DRS_ZENABLE, true,
125 D3DRS_AMBIENT, D3DCOLOR_XRGB(15, 15, 15),
126 D3DRS_LIGHTING, true
127 };
128 rt::set_states(m_pd3dDevice, states, NUM_OF(states));
129

130 // Set up two directional lights in opposite directions
131 D3DLIGHT9 light;
132 ::D3DUtil_InitLight(light, D3DLIGHT_DIRECTIONAL,
133 -1.0f, -1.0f, 2.0f);
134 m_pd3dDevice->SetLight(0, &light);
135 m_pd3dDevice->LightEnable(0, true);
136 ::D3DUtil_InitLight(light, D3DLIGHT_DIRECTIONAL,

250 CHAPTER 7. VIEWING AND PROJECTION

137 1.0f, 1.0f, -2.0f);
138 THR(m_pd3dDevice->SetLight(1, &light));
139 THR(m_pd3dDevice->LightEnable(1, true));
140

141 // Restore the font
142 m_font.RestoreDeviceObjects();
143

144 return S_OK;
145 }
146

147 //
148 // CMyD3DApplication::set_view_identity
149 //
150 // set the view to cover the entire render target
151 //
152 void
153 CMyD3DApplication::set_view_identity()
154 {
155 D3DXMATRIX one;
156 ::D3DXMatrixIdentity(&one);
157 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD, &one));
158 THR(m_pd3dDevice->SetTransform(D3DTS_VIEW, &one));
159 THR(m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &one));
160 }
161

162 //
163 // CMyD3DApplication::set_view_persp
164 //
165 // Sets up a perspective view using the given camera
166 // parameters and a view frustum sized to the model.
167 //
168 void
169 CMyD3DApplication::set_view_persp(const D3DXVECTOR3 &eye,
170 const D3DXVECTOR3 &at,
171 const D3DXVECTOR3 &view_up)
172 {
173 // world matrix
174 const D3DXVECTOR3 center =
175 (m_mesh_bounds.minima + m_mesh_bounds.maxima)*0.5f;
176 const D3DXMATRIX world =
177 rt::mat_trans(-center.x, -center.y, -center.z)*
178 rt::mat_rot_x(m_rot_x)*rt::mat_rot_y(m_rot_y);
179 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD, &world));
180

181 // view matrix
182 const rt::mat_look_at view(eye, at, view_up);

7.6. RT VIEWS SAMPLE APPLICATION 251

183 THR(m_pd3dDevice->SetTransform(D3DTS_VIEW, &view));
184

185 // Set the projection matrix
186 const D3DXVECTOR3 size =
187 m_mesh_bounds.maxima - m_mesh_bounds.minima;
188 const float back_aspect = float(m_d3dsdBackBuffer.Width)
189 / m_d3dsdBackBuffer.Height;
190 const mat_persp_ratios proj(size.x, size.y, back_aspect);
191 THR(m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &proj));
192 }
193

194 //
195 // CMyD3DApplication::set_view_ortho
196 //
197 // Sets up an orthographic view using the given camera
198 // parameters and a view volume sized to the model.
199 //
200 void
201 CMyD3DApplication::set_view_ortho(const D3DXVECTOR3 &eye,
202 const D3DXVECTOR3 &at,
203 const D3DXVECTOR3 &view_up)
204 {
205 // world matrix
206 const D3DXVECTOR3 center =
207 (m_mesh_bounds.minima + m_mesh_bounds.maxima)*0.5f;
208 const D3DXMATRIX world =
209 rt::mat_trans(-center.x, -center.y, -center.z)*
210 rt::mat_rot_x(m_rot_x)*rt::mat_rot_y(m_rot_y);
211 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD, &world));
212

213 // view matrix
214 const rt::mat_look_at view(eye, at, view_up);
215 THR(m_pd3dDevice->SetTransform(D3DTS_VIEW, &view));
216

217 // Set the projection matrix
218 const D3DXVECTOR3 size =
219 m_mesh_bounds.maxima - m_mesh_bounds.minima;
220 const float back_aspect = float(m_d3dsdBackBuffer.Width)
221 / m_d3dsdBackBuffer.Height;
222 const mat_ortho_ratios proj(size.x, size.y, back_aspect);
223 THR(m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &proj));
224 }
225

226 //
227 // CMyD3DApplication::set_view
228 //

252 CHAPTER 7. VIEWING AND PROJECTION

229 // Set the appropriate view state for each of the 5
230 // views (4 quarters, plus a view that covers the
231 // entire render target). For simplicity, the matrices
232 // are recomputed every time.
233 //
234 void
235 CMyD3DApplication::set_view(e_view view)
236 {
237 const D3DVIEWPORT9 vp =
238 {
239 m_views[view].x, m_views[view].y,
240 m_views[view].width, m_views[view].height,
241 0.0f, 1.0f
242 };
243 THR(m_pd3dDevice->SetViewport(&vp));
244 switch (view)
245 {
246 case VIEW_ALL:
247 set_view_identity();
248 break;
249 case VIEW_UPPER_LEFT:
250 set_view_persp(D3DXVECTOR3(0, 0, -5),
251 D3DXVECTOR3(0, 0, 0),
252 D3DXVECTOR3(0, 1, 0));
253 break;
254 case VIEW_UPPER_RIGHT:
255 set_view_ortho(D3DXVECTOR3(0, 5, 0),
256 D3DXVECTOR3(0, 0, 0),
257 D3DXVECTOR3(0, 0, 1));
258 break;
259 case VIEW_LOWER_LEFT:
260 set_view_ortho(D3DXVECTOR3(0, 0, -5),
261 D3DXVECTOR3(0, 0, 0),
262 D3DXVECTOR3(0, 1, 0));
263 break;
264 case VIEW_LOWER_RIGHT:
265 set_view_ortho(D3DXVECTOR3(-5, 0, 0),
266 D3DXVECTOR3(0, 0, 0),
267 D3DXVECTOR3(0, 1, 0));
268 break;
269

270 default:
271 ATLASSERT(false);
272 }
273 }
274

7.6. RT VIEWS SAMPLE APPLICATION 253

275 //
276 // CMyD3DApplication::draw_scene
277 //
278 // Set the appropriate view state, clear the viewport
279 // and draw the text mesh.
280 //
281 void
282 CMyD3DApplication::draw_scene(e_view view)
283 {
284 set_view(view);
285 THR(m_pd3dDevice->Clear(0L, NULL,
286 D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
287 m_views[view].bg, 1.0f, 0L));
288

289 THR(m_mesh->DrawSubset(0));
290 }
291

292 //
293 // Render()
294 //
295 // Render each of the views and possibly draw statistics
296 // on top of all four views.
297 //
298 HRESULT CMyD3DApplication::Render()
299 {
300 THR(m_pd3dDevice->BeginScene());
301

302 // draw four views of the model
303 draw_scene(VIEW_UPPER_LEFT);
304 draw_scene(VIEW_UPPER_RIGHT);
305 draw_scene(VIEW_LOWER_LEFT);
306 draw_scene(VIEW_LOWER_RIGHT);
307

308 // Render stats and help text
309 if (m_draw_stats)
310 {
311 set_view(VIEW_ALL);
312 RenderText();
313 }
314

315 THR(m_pd3dDevice->EndScene());
316

317 return S_OK;
318 }

254 CHAPTER 7. VIEWING AND PROJECTION

