VOLUME 1 AUGUST 1978 ISSUE 2

.
S

M6 (+)MX — MX

Y

(H IS STORED IN STK)

$2.00 AN ARESCO PUBLICATION

EDITORIAL

Editorials are not my strong point - and most of the VIPER issues will not have one.
But I couldn't pass up the opportunity this month to tell you how much I appreciate
the overwhelming response the VIPER has enjoyed from VIP owners (and prospective
owners) all over the USA and Canada. In the first month alone, we've received more
than twice as many subscription orders as we expected; articles, ideas, suggestions,
and requests for specific information; even a few CHIP-8 programs.

I have shared your response with RCA's VIP product manager, Rick Simpson. He's as
pleased and impressed as I am - as you can see in the New From RCA column in this
issue, RCA has decided to support the VIP in a big way, and is turning out new VIP
related products so fast it makes your head spin. We aren't supposed to know - or
even guess - that there may be a VIP version of TINY BASIC in the works at RCA, so
don't breathe a word to anyone about it - but I caught a peek at a memo which would
suggest that someone at RCA is working very hard to get TINY BASIC up and run@ling on

the VIP by Christmas.

This issue contains the most-requested article (an indepth discussion of the

CHIP-8 interpreter),

There are a few other goodies thrown in, as well. You'll see that this issue
is not all prettily typeset, as issue #1 was - we couldn't take the chance of

introducing errors into the manuscripts.

In fact, from now on, most of the

articles will be copies of the author's original work. Typists generally don't
understand flowcharts, schematics, or code, and errors are remarkably easy to
come by. One of the reasons this issue is two weeks late is a belated decision
to forgo typesetting..... The next issue will be on time, since we already have
most of the material in-house (thanks to all of you who wrote and shared your

ideas and discoveries with us!)

Hope to see some of you at PC '78 in Philadelphia. Come by the RCA booth and see
some of the marvelous new VIP related products

Until next month, then.

SUBSCRIPTION RATES, ADVERTISING RATES

Terry

AND OTHER ESSENTIAL INFORMATION

The VIPER is published ten times per year and mailed to
subscribers on the 15th day of each month except June and
December. Single copy price is $2.00 per issue, subscription
price is $15.00 per year (all ten issues of one volume.)
Dealer prices upon request. Outside of Continental U.S. and
Canada, add $10.00 per subscription for postage ($1.00 for
single copy).

Readers are encouraged to submit articles of general interest
to VIP owners. Material submitted will be considered free
of copyright restrictions and should be submitted by the 1st
day of the month in which publication is desired. Non-
profit organizations (i.e., computer clubs) may reprint any
part of the VIPER without express permission, provided
appropriate credit is given with the reprint. Any other
persons or organization should contact the editor for per-
mission to reprint VIPER material.

Advertising rates are as follows:

1/4 page — $25.
1/2page — §45.
3/4 page -$65.
full page - $85.

Less than 30% of the VIPER will be availabie for advertising.
Please send camera ready copy in the exact page size of your
ad on 8-1/2 x 11 white stock by the 1st day of the month

in which you'd like the ad to appear. Photos should be
glossy black & white in the exact size to be printed. Payment
required with copy.

The VIPER is an Aresco Publication, edited by Terry L.
Laudereau. For information contact Editor, VIPER, P.O.
Box 43, Audubon, PA 19407. (215)631-9052

The VIPER is not associated with RCA in
any way, and RCA is not responsible for

its contents.

Dear Terry,

Having for some time been fasScinated by the 1&802uP and by rather
vague reports that it was designed to support compact interpreters, I
ordered the VIP directly trom PCA at PC “77 in Atlantic City. Before
that time, i1 bhao opreacbocardea the “ELF" describea in Popular
Electronics.

Not being much interested in vicdeo games, my primary reason for
purchasing the VIP was to learn numerical interpreter techniques; my
second reason was because of the tuilt 1in cassette 1/0 and video
interface. ‘

My video display is a %" Hitachi black and white mocdel PA=-5 with
the Pickles anc Trout agirect video entry conversion kite This 1dis a
combination which I can heartily recoummend to everyone. My cassette
recorcer is a low quality %¢9 model. At first, I had a great deal of
difticulty with battery operatione An A.C. adapter solved those
problems.

After writing a few simple CHIP-Y programs and implementing some of
the games in the instruction manual, I analyzed the structure and
operation of CHIP-5. In the fgrocess, I have produced a map of
tocations UCDU=-UTFF ana have tlow charted some of the more complex
subroutines (instructions) such as the DXYN instruction. I have also
tlow chartea the ROM monitor program but much of it remains obscure to
me. Although -some might complain tnat this information should have
reen supplied with the VvIP, 1 tound the experience invaluable in
learning machine (1842) language programming techniques. Also as a
result of my analysis, 1 have found some possibilities in CHIP-8 which
you may wish to communicate to your readerse.

Tne 8XYN instruction (N=U,1,¢4445) has four undocumented functions
- EXY5, 3XY&, EXY7, and &XYE. This is due to the fact that the EXYN
instruction operates by executing a single byte subroutine formed from
the "AN'" cigit. The description that follows applies to all values of
N except N=UJe. In this casey, the contents of VY is simply stored in
VX :

The 3XYN subroutine begins execution with P=2, X=2, K5 pointing at
tne last byte of &XYN, R6 pointing at VX, and R7 pointing at VY. If N
is nct Uy, a hex "0L3" is pushed on the stack -M(R2)- followed by a byte
composed of the Llast byte of &XYN orred with a hex "FO", X is then
set to ¢, the 0 register is locaded with the contents of VY and a SEP
2 => P Jis executed. Thusy, the single byte subroutine "FN" s
executecd, tolloweu by a "23" or S&EP 2 =-> F which returns control to
the 2XxYN subroutine., Followiny this, the contents of the D register
is storec in VX and the state of DF (2 or 1) is put in VF.

Therefore, it *n=3, €&, /7y or E, the tunctions of =exclusive or,
shift right, subtract, anc shift left respectively are added. This is
summarizecd in the following table:

INSTRUCTION
8xvy0 VX <-
XY VX <-
gxy2 VX <=
* §XY3 VX <=
EXY4 VX <=-
8XYS VX <=
* 3XY6 VX <=
* EXY7?7 VX <=
* BXYE VX <=
N = & through D or F
result in the execution
(at best) results., A
instruction follows:
C1F2 F8 LDI 381->D
01fF3 81
01F¢4 BA PHI D=->RA.1
01F5 F6 SHR O0=>D=>DF
01F6 F6 SHR 0U=>D=>DF
01F7 F6 SHR J=->D=>DF
O1F8 F6 SHk 0->D=>DF
01F9 30 BR BR 012F
O01FA 2F
0200 6370 v3=70
0202 640F V&4=0F
0204 6A00 vA=00
0206 6800 vB=00
0208 A270 1="x="
020A 2244 DO SR,
020C 8600 veée=VvO0
U20E 6BO6 vB=06
0210 AZ274 1="Y="7
0212 2244 DO S.R.
0214 8700 v7=v0
0216 68B0C vB=0C
0218 A279 I="N=°
021A 2244 DO SR,
021C 8042 vO=vO*V4
0218 8031 vOo=v0+v3
0220 A261 1=0c¢61
0¢22 FOSS MmM1I=vOD
0224 6F00 VvF=CO
0226 2260 DO S.R.
0228 B80FO0 VvO=vF
022A 6B12 vB=12
022C A27E 1="F="
022E DABS SHOW 5 @ A,B
0230 224E DO SR

RESULT
vy
VX + VY (VF <-
VX * VY (VF <=
VX ® VY (VF <=
VX & VY (VF <~
VX = VY (VF <-
(SHR)VY (VF <-
VX = VY (VF <-
(SHL)VY (VF <-

cannot be used

of an
CHIP-§

immediate
program

0232
3234
0236
J238
023A
023¢
J23E
3240
0242
J244
g246
0248
U24A
024¢C
J24E
0250
0252
0254
0256
3258
J25A
g2sc
025E
0260
g2e62
0264
g2e66
G267
0268
J2e69
0264
u2és
0zecC
0260
026E
026F

DF)
DF)
DF)
DF)
DF)
DF)
DF)
DF)

because these
instruction
demonstrate

to

8060
6818
C24E
F20A
E4AT
11FC
123A
0000
0000
DA3S
FOOA
F10A
Ceeo
&€011
6AC9
FOF2
DABS
6AO0F
FO29
DABS
6A00
UOEE
0000
8600
O0EE
6Goo
F8
FO
A6
ué
FE
FE
FE
FE
56
D&

LDI

PLO
LDN
SHL
SHL
SHL
SHL
STR
SEP

"ENY MNEMONIC
F1 OR
F2 AND
F3 XOR
F& ADD
F35 SD
Fé6 SHR
F? SM
FE SHL

values would
with uncertain
the 8XYN

VOo=Ve6

vB=18

DO SeR.
DEBOUNCE

SKIP IF KEY#VS
GOTO O1FC

GOTO CHECK KEY

SHOW S5a A,S8B
vO=KEeY
V1=KEY

DO M.L.S'R.
vi=vO+Vv1
VA=09

I=MSD VO
SHOW 5 @ A,B
VA=0F

I=LSD VO
SHOW 5 @ A,B
VA=00

EXYN S.R.

FO->D

M(R6)=->D
DF<-D<-0
DF<-p<=0
DF<=D<=0
DF<=-D<=0
D->M(R6)
2->P

0279 8y “N=7

G270 &8 “xX=° 427A (8
0271 53 0278 A8
G272 20 go?7C 98
G273 53 0270 8¢
274 88 ‘Y=< 027E F3 “F=7
0275 53 U27F &3
0276 2u 0280 FJ
277 23 0281 83
0278 20 0282 80

Use of the program is simple - enter two digit values for X, Y, and
Ne These values and the resultant values of VF and VX are displayed.
The tirst digit entered for N is ignored; the Llast digit of N
determines the tunction performed - or, and, add, etc. Depressing key
F restarts the program.

Note that a machine Llanguage subroutine was entered at location
U1F2e This provides a new CHIP=-8 instruction =-FXF2- which sets I to
the hex pattern of the most significant digit of VX. The instruction
loacs the contents of VX into D, shifts D right 4 times, then branches
to the appropriate place in the FX29 subroutine. The space from 01F2
to 91FB is free for the addition of cther "FX" type instructions which
are found useful. For example, set timer equal VX and wait, shitt VX
lett cne digit position, anc SO 0N

Another unused Llocaticn begins at OUOFC and enas at C104, This
space is suitatle for otten used machine language subroutines such as
wait for timer equal zero. Or, by moving the two beginning bytes of
the "FX'" subroutine at locations 2105 and (0106 to Llocations OOFE. and
O0OFF, ancther MFX'" dinstruction =-Fx00- can be inserted at locations
U100 to 0106 in front ot the FXU7?7 instruction. A possible "FXx"
jnstruction subroutine which will fit here is O6FEFEFEFES6D4. This
series of dinstructions will shitt vX Lleft four times or one digit
position. However, if this is done, one other change must be made.
The interpreter table at locations U050 to OO06F which <contains the
addresses of the CHIP=-& instruction subroutines must be changed to
reflect the new entry point of the "FX'" subroutine. Locations 0OOS5F
and OUG6F contain U1 and US respectively which is the original starting
address, If the bytes at 0105 and U106 are moved to OOFE and OO0OFF, a
CC must be placed in ULOSF and an FE in J06F.

I have written a simple editor program which resides in the first
two pages of RAM. It consists of a numerical interpreter in locations
C000-014F and the ecitor program, written the numerical language, in
locations 015J-u1FF. The functions of the editcr allow me to display
and alter any locationes The display address can be rapidly or slowly
incremented or decremented. There is also a copy function which will
copy any range of locations to any location except 0000-01FF, of
course.

I have also written an expanaed CHIP-8 language which I call CHIP=8
1/2. It occupies 2 pages anc although very similar, is totally

incompatible with CHIP-&., 1 was able to add two new op codes by
putting EXA1/9E into the "“FX" series of instructions and by combining
SXY0 and 9XY0 into one ofp coce. The two new functions are branch to

MM if VX = 0 or vX # U and take the form: NXMM. Another major change
over CHIP-& was the relocation of thne “FX" instructions to page 2,
allowing a full page of this instruction type. Alsoy the display

instruction was expanaeu to include OR, AND, XOR, and test functions.

I nave witten a LIFE program which occupies practically all of my

VIP"s 2K of memory. It consists of a large machine language
subroutine supportec by CHIP-8, The LIFE grid is a 64 X 22 cell
array,; a new generation is displayec every 2 1/4 seconds. Page 2 is

occupied by a CHIP=-8 program which allows the generation of a starting
patterny, <c¢clearing the array, depositing predefined patterns, and
starting and stopping the LIFE process. Page 3 is occupied by the
LIFE subroutine. Page 4 1is a Lookup table which is wused to fina the
population <count of a celle. Pages 5 and 7 are the alternate
generation display vbuffers. Page ¢ is used to store predefined
patterns. This program evolvea from an all CHIP-8 program to the
inclusion of larger and larger machine language subroutines as I
sought to decrease the <cycle time from ten minutes to the present

2 1/4 seconds. I adon“t believe that unrolling my <current LIFE
subroutine any more will bring substantial gain. Possibly there is a
faster algorhithm which can be employed. However, I think that the

only way to gain a significant increase in speed will be by a hardware
change. That isy by the addition of a Line buffer to reduce the
overhead of repeated DMA requests for the same & bytes. Such a line
buffer would have the added aavantage of allowing the use of three
cycle instructions.

In the future, I plan to cesign a line buffer which will take the
form of a plug-in moagule containing the video interface <chipy a Lline
registery, and miscellaneous lLogice The plug in module will replace
the wvideo IC in 1its present Llocation. At the same time,y, I may
investigate tne possibility of expanding the display size to 122 by 64
or some such size.

Another hardware change that I plan to implement is the addition of
some sort of primitive disk-like random access device. It will
probably be an enaless tape loop - cassette or cartridge.

My software plans will be combined into a single operating system,
a super CHIP-X, which will include numerical programming language with
immediate execution of instructions entered from the keypad, editor,
tape access with file management (if I can come up with a satisfactory
rancom access device), anc perhaps program relocation, The numerical
instructions will probably be three or four bytes in Length with one
byte op codes. Of <course, more than 2K RAM will bpe required for all
thise. I have orcderec the memory expansion kit from RCA. Hopefully
this will be enoughe.

I am employed by a Llarge computer manufacturing company
headguartered in Blue Eell, Pa. My background is primarily
electronicsy but my software experience is catching up with that,

Most of my acdult empgloyment has been 1in the educational/technical
writing fields. I am more than willing to joins/form a VIP user”s
cgroup and to help anyone who wants help-with their VIP,.

PLease feel free to publish any or all parts of this letter.,

Sincerely,

Peter K. Morrison

NEW FROM RCA

The VIP will be sporting vivid color this fall with the introduction of the VIP
COLOR BOARD from RCA. You'll have program control of three background colors &
eight foreground colors with CHIP-8C, the color-language addition to CHIP-8.
Available late October. Priced under $80.00.

Convert the VIP single-tone output to 256 different frequencies with the new VIP
TONE BOARD from RCA. With a single machine language subroutine added to either
CHIP-8 or CHIP-8C, you'll be able to set the frequency and duration of the output
tone. Speaker and jacks included. Available late '78; priced under $30.00.

Your VIP will be synthesizing two-part harmony with RCA's newest VIP product: the
MUSIC BOARD. You'll have program control of frequency, duration, and amplitude
envelope for each of two independent output channels, and an on-board potentio-
meter will control tempo. There will be a provision for sync output - for multi-
track recording or slaving several VIPs for simultaneous play. The software,
incidentally, will support the PAIA drum synthesizer which can be hooked on thru
the output port. No speaker included. Under $50.00.

Add 4K of static RAM to your VIP by plugging in still another new VIP option. The
MEMORY EXPANSION BOARD attaches through the expansion connector, and jumpers will
address any of the first four 4K memory segments. Available by the end of the
year, for under $100.00.

If you're a fan of two-player video games, this will please you! The new VIP
EXPANSTON KEYPAD is just what you've been waiting for. The 16-key keypad and
cable connects to a socket on the color board or on its own (also new!) VIP
KEYBOARD INTERFACE CARD. Instructions are included for use with either CHIP-8
or CHIP-8C. Available late October, each will be priced under $20.00.

At last you can program your own high-level language for the VIP with RCA's new
EROM BOARD and the EROM PROGRAMMER. The board allows two Intel 2716 EROMs to be
interfaced to the VIP and has provisi ns for placing FEROMs anywhere in VIP mem-
ory space. It also allows re-allocation of on-board RAM in memory space. The
programmer allows you to program the Intel 2716 EROM, and comes complete with
software to program, copy, and verify EROM. All required EROM voltages are gen-
erated on poard. Both should be available "soon'". The EROM board is priced at
under $50.00 and the Programmer will be less than $130.00

A TEXT EDITOR FOR THE VIP Part One
by Don Stein

I was tired of all my friends in the Crystal City Computer Club bragging about
their big, expensive computers, and looking down their noses at my little VIP.
Why, just their latest peripheral add-on board alone, they liked to tell me,
cost more than my entire computer!

But I knew that my VIP was not only cheaper than their monsters, but also better.
After all, my microprocessor chip was as powerful as theirs. Furthermore, they
were always complaining about glitches and bus noise; I knew that since my VIP
used CMOS technology instead of TTL, it didn't have any glitches. For the same
reason, my VIP was a much better "hands on'" computer than theirs - if I wanted

to add hardware, CMOS would be much easier to work with than their TTL machines.

And my VIP had one other advantage. Since practically everything was software-
driven, I could change the way the machine operated by making changes in the
software - I wasn't tied down to a particular operating system or programming
language.

To prove my point, I set out to write a text editor for my VIP. It would have
all the bells and whistles their big machines didn't have - such as forward and
backward scrolling; forward and backward paging; automatic repeat on every key,
including control keys; full software motor control of two or more tape drives;
and so forth. And it wouldn't require 8K or 16K of memory, either!

This series of articles describes the text editor I have developed. The reader
can be the judge as to whether I was successful in proving my point.

Character Display

The first problem was how to display characters with the VIP. (learly, the regu-
lar display operated under CHIP-8 was not high enough resolution; I would have to
use full resolution (64 X 128 dots) display described on page 94 of the VIP Instruc-
tion Manual.

Even with this display, the limiting factor would be the number of dots (64) in the
horizontal direction. To get even 16 characters per line, separated by spaces, it
would be necessary to use character displays having only three horizontal dots per
character,

I experimented with several character formats, both upper - and lower - case, and
finally settled on an all-upper-case format permitting eleven rows of 16 charac-
ters per row; each character would be represented by a 3 X 8 dot matrix in a 4 X 12
field. The eleventh row of characters would just touch the bottc of the screen
display area.

This format provides perfectly legible, but not always beautiful characters. Did
you ever try to represent an upper-case N, for example, with a 3 X 8 matrix? None-
theless, since the text editor would use a software character generator, I would

be able to change the character display patterns at any time.

ASCII Keyboard

The next step was to hook up a typewriter-style ASCII keyboard. There are many
such units available for around $50. I selected a Risk keyboard, which cost about
$70 including a nice-looking cabinet.

Hooking up the keyboard was simple. I merely ran the outputs of the keyboard into
the inputs of the optional VIP input port. Then the "keypressed" or 'valid data

strobe" signal was run into one of the flag lines (I used EF3 the same as the hex
keypad, because I wanted to keep EF4 free for other uses). The "keypressed' or
"yalid data strobe" also has to be run to the U25 latch input.

Note that the data inputs and the U25 latch input should be positive logic, whereas
the flag input requires negative logic. I simply used a logic inverter between the
data valid strobe and the flag input. It is not necessary to buy an expensive IC
to get a logic inverter; a cheap 4001 or 4011 can be wired up as an inverter, using
the scheme shown in figure 1. I used a ready-made $3 PC board (Radio Shack 276-
154) to mount the IC and the wires. I also used this board to mount the circuitry
for controlling the tape drives (described in a later installment). The complete
circuit is shown in figure 2.

+5 .
ouT l— QuT
IN
o—|
a) % of a CD 4001 b) % of a CD 4011

FIGURE 1 - Logic Inverters

Pre—————

VIP input connec-

7 data lines :
from ASCII - 1’ gor lines A thru
keyboard //]

E:;; J

? h— ‘

Valid data
strobe fro , |
ASCII key- pin 11 Line X (EF3)
board I
——————— ? CD 4001

r—

Line K (U25 latch)

FIGURE ? - Wiring Diagram to Connect

ASCII keyboard to VIP Input
Port

115v
60 Hz

iri U2 l o GND.

c1 c
T

"
{) -12 volts

may be installed
here, if desired

FIGURE 3 - 12 Volt Power Supply

12 Volt Power Supply

Most ASCII keyboards require a -12 volt power supply. Also, RF modulators require
a negative voltage supply. Therefore, I decided to build a cheap 12V power supply.
The circuit, using Radio Shack parts, is shown in figure 3. The total cost is
under $10.

Parts List r 3

Tl - Transformer, 115v primary
18 - 24v secondary, 300 ma N
(Radio Shack 273-1386)

Ul - Full-wave bridge rectifier
100 PIV, 300 ma or more Y
(Radio Shack 276-1152)

U2 - 7812 Voltage Regulator

Read Input
(Radio Shack 276-1771) latch and
Cl - Electrolytic Capacitor, process

1000Mf or more, 35 WVDC data
(Radio Shack 272-1032
or 272-1019)

C2 - Tantalum or other high Set timer
quality capacitor, 1Mf, to 3/4
35 WVDC. (Radio Shack
272-1406

second

'y
Read Input
latch and
process
data
Set timer Notes:
to 1/5 .
second 1. Assumes KB is hooked up to flag 3
2. 3/4 Second = '30' in hex
I 3. 1/5 Second = '@B' in hex

FIGURE 4 - Flowchart to Read ASCII Keyboard, With Automatic Repeat Function

Data Input Software

The software to read the ASCII keyboard as to test the flag line, read the latch,
and wait until the flag line is no longer active before reading the next character.
In addition, an automatic-repeat feature can be programmed using the VIP timer.

A simple flowchart of this software is shown in figure 4; a more detailed description
of the program steps will be covered in a later installment.

Next Month

Next month I will describe the overall text editor software, along with a generalized
operating system I wrote to go with it. Future installments will cover the tape
input and output routines and tape drive motor control. By the way - the entire

text editor fits in 3K of VIP memory.

9

THE CHIP-8 INTERPRETER

by Gooitzen S. van der Wal
The CHIP-8 interpreter is written in the language of the micro-
processor CDP18@2. The microprocessor has, among others, 16 2-byte
registers (R) and two 4-bit registers (P and X). P is used to point
at the register which is serving as the program counter. X is used
to point to another of the 2-byte registers which is serving to pont
to data in memory. Initially R@ (P=@) is sued as the program instruc-
tion pointer. In the CHIP-8 interpreter, R4 (P=4) is used as the
call-routine program counter, R3 (P=3) is the interpreter subroutine
program counter, and R5 (P=5) is the CHIP-8 high-level language pro-

gram counter.

Basically, the CHIP-8 interpreter sees the CHIP-8 program instructions

as a data list. The call-routine takes a single CHIP-8 program instruction
byte with M(R5) (= Memory contents at address R5) . The call-routine recognizes
the first digit and sets R3 to the address of the interpreter-subroutine

(and sets P to 3). Then the other three digits of the instruction are used
to execute the right subroutine. All those subroutines are ended by setting
P back to 4 so the call-subroutine can take out the next CHIP-8 program

instruction.

The basic flow-chart for the interpreter is then:

P=0 IInitialization]
TV CHIP-8
P=4 ;%Call-RoutinéL(M(R5) ..} Program
f = Listing

33 Pv 2
P=3 _Interpreter-Subroutine] EEE}Eépongig Subroutine/

<~ &

h 4P N

Fig. 3

For more detailed description of the CHIP-8 interpreter see flow-chart.
10

/I—Qow- C haet CHIP-8 | NMTERPRETER.

P=0 INITIALI2ATION

R8.1 . OL {Disriayeace?
R6.1 ., Ok {R6E« VX R7-VY\
R2 - OKCFIETKRY
Rl . 8146 | nTERRUET Roumine |
Y4 R4 . 004B { CAU RouvINef
PC = RS§ . 0OITFC {CH(P-& PRGGRAM CounTER }

QTARTS W\TH: CCE AR DIsPLAY

TUARN TYawn
P-4 CA-ROuTINE: Get progcam byte —» RT.0
X:=2 \ L
PC 41
YES
“FIRST msmuamu7 DT « O MSECGND INST. D16 T —» RI.I
TFIRST INSTRUCTION DIG.T 40053 5 RC Get progrom yle = R3.0
GECOND INSTR. DIGIT +OKTFO > RE 2V ¥ PC +1
qg.b prooconm ‘oyte
5P
\
TRIAD [NATR. DIGIT +OKFO D R} =VyY
399 ¢
= £ (FIRST InsIRucTION D16 T >
R3 = f(iw) ’l QUBROUTIME W (TH
R3 A2 PROGRAM Coumrce.
Colo CALL. F 4
DECODE TABLE ;. “FIRST INSTRWCTION DiéIT (6) 1 2 3 y c é

J T TN T T T

R3 - [(Twss eowm: ONMA 01FC 013 0183 oiF8 oigs 018y

TIRST INSTR.DIGT : ? 8 q A a c D E F
) Vol

N T
R&.‘(): o1&} o018 ©

q! O0I1EB OiA4 O0.1D§ 0030 0:/99 o108

—

11

,F X nn . q;t- peoqrom 51“.-)“3.0 PC +1 A
<Go e 1M] Yyp
TXx0%
{vx-Tmer§ 'L RE.| — vx
TXO0A , C - Pl enae: 8igs 330 .
"KEV-QW\\ g —-{ R 9.4,5- wWaR: gs VA= KEY
E)US' .
INX >Timery l VX — R8 N
¥ &
t —'[vx — R§.0
{vx-—>TOuE c
e RA.0 = RAD 1 M{Vx) OVeR Flow NG
L:I*VX ?
\Es
RAL1 +1 »>
Ex29 : RA- 8100 +{Lsoel w| M(R8) = RA.O
T -PATY [Ux) 190‘"53! D eécope TARLe RA Poimt to patteim
X33
v RT. | {10 v | . 100 e -
O S U o o ST N
D16, EQ.VX L]
1 paiatar + A MI. O
Me S o, VX - ME > D *Ie— MI + 4
No
D > VX
YEs
7'1&1‘-\-»\/:({RreLvxl T poimier —2
TXss —{Réo-psw -—’[M7 = vo
VO :vx>n1
Ex 6% ¥Xsss M3 > Ni
ML -SVO:UA R} "% Txés H-:—v n3
T4 ro “‘3 Cl€re STK. N

P-3
X:2 2 MM, PC +1\ STO. PC wm STK PC -1
'Qra,.e,[. thimk. {retuem aoldras
<
Oy ——»(Cet pomamimte (mpt]— PC 41 J MM, >RE0
Go to tinn T
-
Gt LsDot RO M, —H M, > RS
BAKK ———p (at e proeam e (——H P+, KK=>D
SEP 3} VX=kK
S$xY0 _ NoO
SKIP id Vasvy PC+ VY =» @
YES
axt Ty vy ——’{ e+ VYD "°
X K N
s‘:ar:}v:xk« Gt et ogte ks Pc+ ¥ Kk-=p
b 4
Exfn ——) VX ->KEY —o[M- R30 PC+2
<Qc io MM
Exqe @wo l .
SICIP i} UXaKs| kd]
Vs : i
EXAL EF3:2 no R
Sxae i} VX Sy
M VY=VO C,d proqram bytc [M,"gH PC+)
GotoNIMt1VO |
.
:' RSO:H:”;#VY _‘I LSDo}R‘-JO*‘)D (- H,)
t
i YES D+ 01 —t[D> RS N
% 7
XXX Ced pcootonm oyle (:XR) P K v A
KK VX 1e* P iet A , K - VX
1X—K-K ———4 ot @E0gcOm. te {eun) PC VX +KK > VX)
VX txu 0\ ™ H

13

f:3 H‘?P
x=2 8 X YN
—n (et wSD PrC 14
AQTN Get 45D 4f praacar, be
dxvo
NO VES
vy 2Vx DI >STK 0 ud VY VX ——
L
N +F0 51K —+Lé->x { Mx=vx) V¥ 5D
g25° {
3 :
“Fi /Tz /PS /‘Fq 37 > VX _* it Ovum:“ 5‘;;22
O™ Oui o} fenr Cpmrations
CXKK) R0+ RO = RR:R4Ry —ol R.R,; tM (01R(Ry) >y
(4 R SNOOM DIG.TS) I
<
SHIFT VX (it o riamt Vk®RQg.1
P {
Get proarom tagte (:md———;{ Pl —o{ VX-kx = VX L——J
AMNM ————) Get poq@n loqie (:Mm) eC M.M; > RA.0
OMnn>T l
LSDejRS.0 <RA.\ (1) |—
COMING NEXT MONTH

J. W. Wentworth disassembles the VIP operating system

... More about Don Stein's

VIP Text Editor ... Rick Simpson modifies CHIP-8 to provide I/O instructions ...

VIPpers' Letters To VIPER ... New CHIP-8 Games ... More news from RCA ...

14

. 76543210
DXYN —s| HORIZONTAL [OTo[X X [X[XIX[X]

- = i

76 5 43210
VERTICAL: [g]glglililil;& [ofofojofox[x]X]
VY
! ! e sTx
765 4 32 1L?
[RC.I=Tv PaCE | rReo: [XX XX X [X]xx]
N TVA -

[eT L&D OF PRGRAM BYTES=N}—+{ PC+!I }———={ STO N Im RD.O, RF.O |—

——{ 00—+RF.0 R6.0=D0 |e

(TV. PATT W.A)

NEXT PAGE _

= a+1 |+ Dp—=RD.I | RE.:—J»RE.OJ

e NO
RD.I —=D

(STO)| D—=RD.I RF.0—sD J—u SHIFT | BIT RIGHT —D

DF —»

(RCL) —+{ SHIFT | BIT RIGHT —DDF |

RO.l—»M.6, 6 +1
RF.C—M.6,6 +|

- i

RD.| RF.O M6 M(6+1
NOTE % : | I | —— | []}N TIMES

——l
SHIFT RE.l1 BITS

15

'——F{RESTORE RA)—»

RD.O —=R70 |

Y
R7.0—+D ca>—1E3 4
1 NO [ioLe (syno)

R7.®I f— rA®l |

| c—>x | Rc=Tva

00-+R70 -

v

I

RDO=N |

<~

M6 MX

NO HIT

YESHIT (MX =TV PAGE)

M6 (+)MX —> MX

(XOR)

TVA+I

CXOR

16

R7.0-+VF

CODING FORM FOR RCA COSMAC PROGRAMS
Title J- W. Wentworth's Analysis of VIP CHIP 8 Interpreter

LiEMORY PAGE OO Programmer

OX -+ RB.1 (where 0OX is the highest
memory page no. as determined by
Operating System)--designates display

page.

0X-1 -+ R2.1
OX-1-+R6.1

(stack pointer)
(VX pointer)

CF +» R2.0 (stack pointer set to
OYCF, where Y = X-1)

)
)

Set R1 (PC for Interrupt Routine)
to 8146

)
|

D4

B7

E2

194

1BC

Pre-set R4 to 001B in preparation
for assignment as PC

01+ R5.1

FC % R5.0 (R5 now set to OIFC; will
serve as PC for CHIP-8 instructions,
commencing with two instructions
included on page 01).

0Y + R7.1 (high byte of VY pointer)

2% X
)Oo-vRC.l

17

20

45

21

Fé

AF.

Fo

Fé

27

FG
32
44

Fq

50

2A

AC

2B|

gF

2C

FA

2D

oF

2E

F9

2F

Fo

30

A6

31

05

32

Fé

33|
34

Fé

FC

35

F¢

36

Fq

37

Fo

38

A7

39

4C

3A

B3

3&9C

3C

FC

3D

OF

3E

AC

JF

oC

Load by R5 and advance (Fetch first byte
of Chip-8 Instruction)

Put in RF .0 (temporary storage)

Shift right 4 times (MSD to LSD position}

IfD=0¢(i.e., if Op Code digit is
" zero), branch to 0044

)
)

OR Immediate with 50

Put in RC.0 (RC now points to 005a,
where "a" is MSD of CHIP-8 Instruction)
Get RF.O (high byte of instruction)

AND with OF, OR with FO (thus
forming byte Fb, where "b" is the
second hex digit in the CHIP-8
instruction, used in some instructions
to designate V X)

Put in R6.0 (R6 becomes VX pointer)
Load via R5 (second byte of CHIP-3
instruction)

Shift right 4 times

OR with FO and put in R7.0
(sets VY pointer)

Load via RC and advance (Loads high
byte of address for appropriate subroutine

Put in R3.1
Get RC.0 (=5(at 1))
Add OF, put in RC.0 (points to low

byte of start address for appropriate
subroutine to execute CHIP~8 instructior:

Load via RC

CODING FORM FOR RCA COSMAC PROGRAMS
Title_ J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

MEMORY PAGE OO Programmer

40

A3

41

D3

42

30

43

B

44

¥F

45

FA

40

OF

47

B3

48

45

49

30

4 /\

40

4

41

22

4C

&

4D

o]

£

D4

00

00

10|

Ol

Ol

Ol

Ol

Ol

0 |

i
.
o o‘

210

A0l

513

Ol

5

Ol

5D

Co

oE

Ot

5F

Ol

Put in R3.0

18

lsoloo
Call subroutine designated by first digit of
CHIP 8 instruction (if not zero) 61|7C
Branch to 001B to fetch next instruction 62|75
""" - == 63|83
ROUTINE FOR FIRST DIGIT = 0
"""""""""""" 64|8B
Get RF.0 (high byte of instruction)
AND with OF to save LSD only 65(75°
66{B4
Put in R3.1 (selects page on which sub-
routine will be found) 67(B7
Lood via R5 and advance (2nd byte of inst.)|g8[Bc.
Branch to 0040 to call subroutine (0OEO for 69l91
erase page, 00EE for return from subroutine,
L OMMM for machire -language subroutine) | |6A[EB
~-2UBRQUTINE TO TURN ON DISPLAY,
Decrement R2 ~(stack pointer) 6B A4
Turn display ON (interrupts will occur,
controlled by routine at 8146) 6¢ D9
Increment R2 6D 70
Return to 0042 6E|99
Filler 6F 05
Filler 70|0€
T1|IFA
| 72|07
High bytes for pointer to start of sub-
routines selected by first digit of CHIP 8 73|BE
instructions (1 through F) 74|06
75|FA
76|3F
171F¢
78 |F&
79 |F6
TA|22
TB|52
1cl|o7
TD|FA
TE|IF
TF|FE

Filler Ist Digit of Instruction

Start Address for
Subroutine

017C
0175
0183
0188
0195
0184
0187
01BC
0191
O1EB
01A4
01D9
0070
0199
0105

Low bytes
for sub-
routine
pointers

-nmonw>~ooo\|o~m4>ww—<\

Load by Ré (VX)

Put last 3 bits in RE. 1

Load by R6
AND with 3F (save lower 6 bits)

Shift right 3 times (save middle 3 digits)

Decrement stack

Store in stack
Load via R7 (VY)

) AND with TF (save 5 lowest bits)

\

CODING FORM FOR RCA COSMAC PROGRAMS
Title J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

MEMORY PAGE OO Programmer

Shift left 3 ti
sol FE) ift le imes A0lAF
81|FE A1PPE
ga|F | OR with top of stack A2l30
83|AC Put result in RC.0 A3(9¢
Get RB.1, put in RC.1 (0X)==RC now
84|95) points to sfc‘:)rt address of first byte of A4[7D
85|BC pattern. A515¢
4.5 Load via R5 and advance--fetches 2nd 16
86 byte of CHIP 8 instruction. A6
871FAI\ Put LSD in both RD.0 and R7.0 AT|8F
88|OF (No. of bytes in pattern) A8l5¢
8914D A9|l G
8AIA7 AA|30
8B F & AB8E
8C{Do| | DO -=»R6.0 AC| 00
8D A6 AD|EC
8E| 93) 00 -> RF.0 AEF&
8F AF AF| Do
9087 Get R7.0((\;V\lho. obf byfis); branch if D=0 |B0|A6
to OOF3. en branch occurs, display
91|32 bytes have been processed and stored B1|93
92|F3 commencing at 0YDO). B2|47
93|27 Decrement R7 B3|8D
Load via RA (I pointer) and advance
94 4A (Loads display byte) B4|32
95:BD Put inRD.1 B5|D9
96 |9E) Get RE.1 (3 LSB's of VX), Put in RE.O |B6]06
97|AE B7|F 2
Get RE.O; if D=0, branch to A4.

98 8E (When branch occurs, display bytes will B8|2D
99(32 have been split into two parts in the evel:t B9[32
that display address did not coincide witl
9A|A4 a memory byte address.) BA| BE
0B} 7D Get RD. 1, shift right, and return to BB|F €
9C|F6 RD.1 (left portion of split display byte) BC| 01
ODIBD Get RF.0, ring shift right (picking up BD| A7
OE|§F carry, if any, from step 9C), return to BE|46

RF .0--these instructions form right portion
OF| 7 of split display byte. BF F3

19

Decrement RE

Branch to 0098

Get RD. 1 (left portion of display byte)
and store via R6

Increment R6

Get RF.0 (right portion of display byte)
and store via R6

Increment R6

Branch to 008E

Wait for display interrupt

C—+» X (C points to start address for
first new byte in display page)

DO -» R6.0 (points to first processed
display byte)

00 -+ R7.0 (R7.0 will be used as «
marker for "collisions" between new and
existing patterns.)

Get RD.0O (no. of bytes remaining);
if D=0, branch to 00D?

Load via Ré (processed display byte}

AND with contents at current address
in pattern on display page

Decrement RD

1fD=20(i.e., no "collision" occurred)
branch to O0BE

01 » R7.0 (marker to indicate that a
"collision" has occurred)

Load via Ré (processed display byte)
and advance

XOR with existing display byte

CODING FORM FOR RCA COSMAC PROGRAMS
Title

MEMORY PAGE OO Programmer

J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

-0

5¢C

C1

oz

2FB

<C

~——— Y—— ~ ~____~

Store via RC (in display page)

Load from top of stack (3 LSB's of display
page addressy, XOR with 07; if result is
zero, branch to 00D2 (display pattern is
at right=hand edge of display "window").

Increment RC

Load via Ré (right portion of processed
display byte), AND via Ré (existing con-
tents of display page address); branch if
result is zero (i.e., if there is no

"collision") to 00CE

01 % R7.0 (marker to indicate that a
"collision" has occurred)

Load via R6, XOR with contents already
present at designated address on display
page, and store via RC (on display page).

Decrement RC

Increment R6

Get RC.0, Add 08, and return to RC.0

If DF = 0 (i.e., if next byte location
remains on display page) branch to 00B3
(Program "falls through" this point when
pcttern reaches bottom of screen)

FF < R6.0 (R6 points to Variable F)

Get R7.0 ("collision" marker), store
via R6 (i.e., as Variable F)

Increment stack
Return to FETCH routine at 0042

20

E098

E1BF

E2(F&

E3|FF

E4AF

E5|93

E6|5F

ET|8F

E8|32

E9|DF

EA 2F

EH30

EQES

ED 60

EH42

EFBs

F0l42

F1|A5

F2

F3|3D

F4A7

F5|7

F6|32

F7AC

F8|24

F9|27

FA|30

FB|F5

FC|00

FD|00

FE|OO

FF oo

= ERASE DISPIAY PAGE= Tt 0050
)OX--RFJ

FF -- RF.0

00--D
Store via RF

Get RF.0; if zero, branch to
OODF for exit to FETCH

Decrement RF

Branch to 00E5

//

Load from stack and advance, put in
RS.1

Load from stack and advance, put inR5.0
(R5 now points to next CHIP 8 instruction)

Return to FETCH routine at 0042

Get RD.0 (remaining no. of bytes in
pattern), put in R7.0

Get R7.0; if zero, branch to 00AC
(When branch occurs, RA (I Pointer)
will have returned to its initial value)

Decrement RA

Decrement R7
) Branch to 00F5

Fillers

120G TORM FOR RCA COSMAC PROGRAMS

%}

o J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

LI0HY PAGE 01 Programmer
]
00> | \
01f
i -1 PFillers
a2p
a3p e /
34| 0 1 CCFINAC DECODING. OF _"E™_Instructions
log ks Load via R5 and advance (2nd byte of
- CHIP 8 instruction)
0G[": | __putinR3 (go to designated address) _____
o2 | Instruction FXO7 (Let VX = Timer) _____
AT} = T Cer R8T
osl* Store via Ré (i.e., as VX)
09 ‘;: Return to 0042
ol . _struction FXOA {Let VX= Hex Key) ___
£
o
e RC = 8195 (keyboard scanning subroutine)
ocC| < .
op; s |
0E}’5
0F}-C
1002 Decrement stack pointer
,'E Call keyboard scanning SR at 8195
11y (key entry is in D upon return)
1212 Increment stack pointer
136 Store via R6 (i.e., as VX)
- Return to 0042
130 | e X1 e T R
15/ 2. 1) Load via R6 (loods VX), put in R8.1
16[¢ |/
1] Return to 0042
1 TInstroction FX18 (Set fone durafion = VX)
181" 1 Load via R6 (loads VX)
19f - Put in R8.0 (tone timer)
1Al Return to 0042
1y 1\ Decimal 100 Constants needed for
0 Instruction FX33
1C1" 1] Decimal 10
100y |/ Decimal V__ /.
1 . | _nstuction FXTE (Let T= T+ VX~
1. & » X
14 Get RA.O

21

20

F4

21

AA

Add VX
Put in RA.0 (as updated | pointer)

22

3B

23

28

24

9A

25

FC

26

01

27

BA

28

D4

29

F8

2A

81

2B

BA

2C

06

2D

FA

2E

OF

2F

AA

30

0A

31

AA

32

D4

33

E6

34

06

35

BF

36

93

37

BE

38

F8

39

1B

3A

AE

3B

2A

3C

1A

3D

F8

3E

00

3F

5A

If DF = 0 (i.e., if updated | remains
on the same memory page), branch
to 0128

Increment RA. 1

Return to 0042

81+ RA.1

Load via R6 (VX)

AND with OF (save last digit),
put in RA.O

Load via RA (start address for 5-byte
pattern of hex digit), put in RA.0

Return to 0042

6 - x-:_d_igif equivalent of VX

Load via R6 (VX), put in RF.1

) 01 + RE.1

1B » RE.O (RE = 011B)

Decrement RA

Increment RA (cancels prev. step upon
first entry into pgm loop, but needed
in later "passes" around the loop)

Store 00 via RA (I pointer)

NG FORM FOR RCA COSMAC PROGRAMS

sl

. MORY PAGE 01 Programmer

J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

40] -

41| =

42|

43 v

:

44| -

40

47

48] - |

491

4n]

41|

4C| -

4D/ .- -

4B

4F|

DA

513"

5[”' oo
L P

5D

S5E|

oF

)

Load via RE (Decimal 100, 10 or 1)

Subtract from M(R6)--i.e., subtract
from VX

Branch if Minus to 4B

Store result via R6

Increment memory location contents
pointed to by RA (= | Pointer)

Branch to 0140
Load via RE and advance

Shift Right

If DF = 0 (i.e., if decimal 100's, 10's
and 1's have not been processed), branch
to 3C

Get RF. 1 (original value of VX)

Stcre via R6 (restores original value of VX)

Decrement RA twice

Return to 0042
Filler

[o o o s o i e o o o o B Lo e o o e e e e e e e e 0 O e o

Decrement stack pointer

Get R6.0 (pointer for VX) and

store in stack

FO+ R7.0

Load via R7

Store via RA (I pointer)
Get R7.0
XOR with top of stack (VX pointer)

Increment R7

22

60

1A

61

3A

62

5B

63

12

64

D4

65

22

66

86

67

52

68

F8

69

FO

6A

A7

6B

0A

6C

57

6D

87

6E

F3

6F

17

70

1A

71

3A

72

68

73

12

14

D4

75

15

76

85

7

22

78

73

79

95

TA

52

B

25

7C

45

7D

A5

TE

86

TF

FA

\

Increment RA

If D 0(i.e., if R7 at Step 5E has not
yet reached value of VX pointer), branch
to 5B

Increment stack pointer
Return to 0042

Decrement stack pointer
Get R6.0 (VX pointer)

Store in stack
FO -+ R7.0

Load via RA (i.e., vial)
Store via R7

Get R7.0
XOR with top of stack (VX pointer)

Increment R7
Increment RA

IfD# 0 (i.e., if R7 at Step 6E has not
Kef reached value of VX pointer),
ranch to 6B

Increment stack pointer

Return to 0042

Increment R5 (point to next CHIP 8 in-
struction after return)

Get R5.0

Decrement stack pointer
Store in stack and decrement

Get R5.1

Store in stack

Decrement R5 (points to low byte of

current instruction)
Load via R5 and advance

Put inR5.0

Get R6.0 (contains 2nd digit of
current instruction)

CODING FORM FOR RCA COSMAC PROGRAMS

Title J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter
MIZMORY PAGE 0Ol Programmer

AND with OF (save 2nd digit of Chip 8 Return to 0042
80 0F instruction) and put in R5.1 A0]D4
81185 (R5 now points to first instruction of Al|3e If EF3 = 0 (hex key matching LSD of
—;;5‘-4 sRubrouhneogzglmencing at OMMM) Aales VX not pressed), branch to 0188
eturn to

—1 ~_lnstruction 3XKK (Skip if VX=KKY [Return to 0042
83 45| ““load bv R5 and advance RKK+=1D ? """ A3 D4 | e
e 2°°d iy k5 and advance {RK'>D a | [-Ltrustion BMMM 1Go To OMMEL > /1

>

85 |F3 XOR (operands are KK and V X) A5|FO FO -+ R7.0 (R7 points to V()

A\ EDZ0(.e., if VX# KK), branch A
86 %—-) to 0182 ’ AGIA7
81782 ATjE7 | 7+ X
88115 Increment RS twice (causing skip of A8 |45 Load by. RS and advance (Loads 2nd byte
8915 next Chip 8 instruction) A9lF4 | Agg sfc)lmfructuon)

_Returnto 0042 _____________ . A5 | PutinR5.0
BADAY | truction AXKK SHR IVXFRRI . |So
8B/4> Locd by R5 and advance (KK = D) ADIg6 Get LSD of R6.0 (2nd digit of instruction;
8CI|ES 6 » X ACJFA
8DiF3 XOR (operands are KK and VX) ADQF
If DF=0 (i.e., if there was no carry from
8E3A If D #0, branch to 0188 AE|38 addition operation at Step A9),
8 Fis8 AF|B2 branch to 0182
Return to 0042

90 P4 | ~~Tstraction 9XYU Bkip i VX V) BOJFC)Add o1
9145 Load by R5 and advance Bl o1
92107| Load by R7 (VY + D) B2[85 | PutinR5.1
93 30|\ Branch to 018C (operands for subsequent B3 |D4 __ff_f_lir_n_f_o_?_‘"_z ________________________

éE XOR operation will be VY and V X) oals r._l_rls_f[_gc:_tjgg_@_)_S_l_(_lg__u_.gi_’._}{_)_g_:-_“_._ri{(j _______
94 _:EESEEQE@E?EZYFXS_‘W'lf VX = VY] Load by R5 and advance iKKN =+ D)
95145] Load by R5 and advance B5156 | Store via R6 {es VX)
96 {07] Lood by R7 (VY » D) B6|D4 | Retumto 0042 ____

97130\ Branch to 0184 (operands for subsequent B7145 | Load via R5 and advance (KK -+ D)
XOR operation will be VY and VX)

98184 1/ e e = B8JE6 | 6= X

99 |gs |____.! EXA1 (Skip if VX # Key) BO|F4 | Add (D = VX + KK)

9A[62| Output VX to keyboard latch, increment R6 BA|se | Store via R6 (as updcted VX)

26| D) BB|p4 |-Retunto 0042 _______________________
OB Decrament 6 (conel avon of prv. sep) (PB4 |- B s
9C U5 is loaded into D) BCu5 Load b R%’"d c}/:das °Ee%%%4§3-2.a.g-~---
: : oad by R5 and advance (Loads 2nd byte
DIA3 Put in R3 (go to designated address) BDFA) of instruction)

9E[36) IFEF3 =1 (i.e., if key matching LSD of |BE|op |/AND with OF (save 2nd digit)

V X is down) go to 0188 IfD b 1
iQF - g BF|3a \ #0, branch to 01C4

23

‘ODING FORM FOR RCA COSMAC PROGRAMS
J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

!

IMORY PAGE 01

Q

T) 3]
m

[¢ I

D
e

m
m

]/

o)
prr 1)

Programmer

Load by R7 (VY - D)
Store via Ré (as VX)
Return to 0042

Put inRF.0

Decrement stack pointer
D3+ D

Store in stack and decrement
Get RF.0 (last digit of instruction)
OCR with FO (forms an instruction code

in the ALU group-=-codes F1, F2, F3,
F4, F5, F6, F7 and FE are valid)

Store in stack (stack now holds a
2-instruction routine)

6+ X

Load by R7 (VY + D)
2 4 D (calls routine developed in stack)

Store result via Ré (as VX)

FF % R6.0 (points to VF)

00+ D

Ring Shift Left (moves DF to LSB)

Store via Ré6 (as VF)
Return to 0042

Increment R9Q

Get R9.0, put in RE.O (NOTE: R? is a
special pointer for this random=number
generator, and is incremented once for

01 =FRé .IIV dlcl:arn'wci))vz points to some

yte
on memory page 01)

Get R9.1 (Random byte resulting from

last previous use of this instruction)
E+ X

24

EO

F4

El

56

E2

76

E3

E6

E4

F4

ES

B9

E6

56

E7

45

E8

F2

E9

56

EA

D4

EB

45

EC

AA

ED

86

EE

FA

EF

OF

FO

BA

Fl

D4

F2

00

F3

00

F4

00

F5

00

F6

00

F7

00

F8

00

F9

00

FA

00

FB

00

the interrupt rctu;nine .)

FC

00

FD

EO

FE

00

FF

4B

Add byte pointed to by RE
Store via Ré

Ring shift right
6+ X

Add original byte formed at Step EQ
to its ring-shifted version

Put in R9.1 (as starting point for next
use of this instruction)

Store via R6 (byte still un-masked)

Load via RS and advance (Loads 2nd
byte of Chip 8 instruction, KK)

AND with byte pointed to by R6
Store result via R6 (as V X)
Return to 0042

Put inRA.O
Get R6.0

Put 2nd digit in RA. 1

_/

Return to 0042

Preliminary CHIP 8 instruction to

precede every CHIP 8 program=--calls
routine at 00EOQ to erase display page

Fillers

Second preliminary instruction to
precede every CHIP 8 program~-calls
routine at 004B to turn on display

S~ "

J. W. Wentworth's Analysis of VIP CHIP 8 Interpreter

e v e e m En n e e o e = S e e S e e T e e G e SR e = T e e - o o W - en - e S . - e e e e - ee as

Initial
Setting
RO DMA Pointer -—-
R1 Program Counter (PC) for Interrupt Routine 8146
R2 Stack Pointer 0YCF
R3 PC for Interpreter Subroutines -——-
R4 PC for Interpreter FETCH AND DECODE routine 0011
R5 Pointer for CHIP 8 Instructions 01FC
RG VX Pointer: in DXYN (Display) Instructions, also serves N
as pointer for processed display bytes, later as VF pointer 0Y--
R7 VY Pointer for instructions involving VY; VO Pointer for
MMM Instructions; RT7.0 is a "'scratch pad' register in *
NDXYN, FX55 and FX65 Instructions 0Y--

RS Timers controlled by Interrupt Routine (R8.1 is a general-
purpose timer: R8.0 is a tone and de-~bounce timer) -——-

(Xl

R2 Special Pointer and ''Scratch Pad'" used in Random Number
Generator utilized in CXKK Instructions--changed by
Interrupt Rouline -——

RA I Pointer for CHIP 8 Instructions -————

R3 1RB.1 is Display Page Pointer; RB. 0 is "Scratch Pad" for N
Interrupt Routine 0X--

RC Temporary Pointer for FETCH AND DECODE Routine;
Destination Address Pointer for DXYN Instructions; PC for
Keyboard Scanning Subroutine in FX0A Instructions. 00--

RD Both Sections Used as "Scratch Pad' Registers in DXYN
{Display) Instructions -——

Pointer for Constants Needed in FX33 Instructions; RE. 1
is 1 "Scratch Pad'" Register for DXYN (Display) Instructions -——

——t
L
las

RF Display Page Address Pointer for O0EO (Erase) Instructions:

RF.0 Usged as "Scratch Pad" in FETCH AND DECODE

Routine and also in DXYN Instructions ————
NOTE: Registers available for machine-language subroutines are R7, RC,
RD. RE and RF. but subroutines themselves must provide any initial settings
required--CHIP 8 instructions may alter these register settings, as indicated
d! Ve,

r o - ——— = - ————+ S - - = - S S o - - e W e e = S e e - S e R - e e T we e - R R Am e W e

*In basic VIP system with 2K RAM, 0X = 07 and 0Y = 06. In general,
0¥ is hichest memory page and 0Y = 0X - 1.

25

COMMENTS

YES! I'd like to subscribe to the VIPER and receive all ten issues of this year’s volume! | enclose $15.00 in full payment.

Name

(Please print or type)

Address

City State Zip

Cash, Check, Money Order Enclosed

MC/VISA/BAC Number Exp. Date

MC Interbank No.

‘Required Credit Card Signature

D You may let other VIP owners in my D I'd like to see articles in the VIPER about:
area know | have a VIP, so they can

contact me.

D ‘I am interested in forming/joining

(circle one) a VIP Users group

MAIL TO: VIPER; P.0O. Box 43; Audubon, PA; 19407

26

LOV6L Vd ‘uognpny
€y xog ‘'O'd
H3dIA

2i9H
dweis
aoe|d

VIPER
P.O. Box 43
Audubon, PA 19407

