
VOLUME 1 AUGUST 1978

M x --". Mx

TVA--!

ISSUE 2

PLUS VIP TEXT EDITOR

X2.00

	

AN ARESCO PUBLICATION

The VIPER is published ten times per year and mailed to
subscribers on the 15th day of each month except June and
December . Single copy price is $2 .00 per issue, subscription
price is $15.00 per year (all ten issues of one volume .)
Dealer prices upon request. Outside of Continental U .S . and
Canada, add $10.00 per subscription for postage ($1 .00 for
single copy) .

Readers are encouraged to submit articles of general interest
to VIP owners . Material submitted will be considered free
of copyright restrictions and should be submitted by the 1st
day of the month in which publication is desired . Non-
profit organizations (i .e ., computer clubs) may reprint any
part of the VIPER without express permission, provided
appropriate credit is given with the reprint . Any other
persons or organization should contact the editor for per-
mission to reprint VIPER material .

EDITORIAL

Editorials are not my strong point - and most of the VIPER issues will not have one .
But I couldn't pass up the opportunity this month to tell you how much I appreciate
the overwhelming response the VIPER has enjoyed from VIP owners (and prospective
owners) all over the USA and Canada . In the first month alone, we've received more
than twice as many subscription orders as we expected ; articles, ideas, suggestions,
and requests for specific information ; even a few CHIP-8 programs .

I have shared your response with RCA's VIP product manager, Rick Simpson . He's as
pleased and impressed as I am - as you can see in the New From RCA column in this
issue, RCA has decided to support the VIP in a big way, and is turning out new VIP
related products so fast it makes your head spin .

	

We aren't supposed to know - or
even guess - that there may be a VIP version of TINY BASIC in the works at RCA, so
don't breathe a word to anyone about it - but I caught a peek at a memo which would
suggest that someone at RCA is working very hard to get TINY BASIC up and running on
the VIP by Christmas .
This issue contains the most-requested article (an indepth discussion of the
CHIP-8 interpreter).
There are a few other goodies thrown in, as well . You'll gee that this issue
is not all prettily typeset, as issue #1 was - we couldn't take the chance of
introducing errors into the manuscripts . In fact, from now on, most of the
articles will be copies of the author's original work . Typists generally don't
understand flowcharts, schematics, or code, and errors are remarkably easy to
come by .

	

One of the reasons this issue is two weeks late is a belated decision
to forgo typesetting The next issue will be on time, since we already lave
most of the material in-house (thanks to all of you who wrote and shared your
ideas and discoveries with us!)

Hope to see some of you at PC '78 in Philadelphia .
some of the marvelous new VIP related products

Until next month, then .

SUBSCRIPTION RATES, ADVERTISING RATES
AND OTHER ESSENTIAL INFORMATION

Come by the RCA booth and see

Advertising rates are as follows :

Terry

The VIPER is an Aresco Publication, edited by Terry L.
Laudereau. For information contact Editor, VIPER, P.O .
Box 43, Audu bon, PA 19407 .

	

(215) 6 31- 9 0 5 2

The VIPER is not associated with RCA in
any way, and RCA is not responsible for
its contents .

Less than 30% of the VIPER will be available for advertising .
Please send camera ready copy in the exact page size of your
ad on 8-1/2 x 11 white stock bythe 1st day of the month
in which you'd like the ad to appear . Photos should be
glossy black & white in the exact size to be printed . Payment
required with copy .

114 page - $ 25 .
1/2 page - $45 .
3/4 page - $65 .
full page - $85 .

Dear Terry,

Having for some time been fascinated by the 18U2uP and by rather
vague reports that it was designed to support compact interpreters, .I
ordered the VIP girectly trom PCA at PC '77 in AtLant~ic City . Before
that time, 1 had oreaaboardea the "ELF" described in Popular
Electronics .

Not being much interestelin video games, my primary reason for
was to learn numerical interpreter techniques ; my
because of the tuiLt in cassette I/o and video

purchasiny the VIP
second reason was
interface .

My video display is a ~" Hitachi black and, white model PA-5 with
the Pickles ano Trout direct video entry conversion kit . This is a
combination which I' can heartily recommend to everyone . My cassette
recorder is a Low quality S29 model . At first, I had a great deal of
difficulty with battery operation . An A .C . adapter solved- those
problems .

After writing a few simple CHIP- ,'-4 programs and implementing some of
the games in the instruction manual, I analyzed the structure and
operation of CHIP-S .

	

In the process, I have produced a map of
locations ULOU-UlFF anu have flow charted some of the more complex
subroutines (instructions) such as the DXYN instruction . I have also
flow chartea the ROM monitor program taut much of it remains obscure to
me . ALthough some might complain that this information should have
teen suopLied with the VIP, I fount? the experience invaluable in
learning machine (18J2) language programminq techniques . Also as a
result of my analysis, I have found some possibilities in CHIP-8 which
you may wish to communicate to your readers .

The bXYN instruction (N=U,1,t,4,5) has four undocumented functions
exy-), , dXY6, tXY7, and 8XYE . This is due to the fact that the 8XYN

instruction operates by executing a single byte subroutine formed from
.the "N" digit . The description that follows applies to all values of
N except N=J . In this case, the contents of VY is simply stored in
VX .

The Z-5'XYN sutroutine tjeyins execution with P=', X=2, R5 pointing at
the Last byte of 6XYN, R6 pointing at VX, and P7 pointing at VY . If N
is not J, a hex "u .5" is pushed on the stack -M(R2)- followed by a byte
composed of the last byte of ~XYN orred with a hex "FU" .

	

X is then
set to 6, the D register is loaded with the contents of VY and a SEP
2 -> P is executeu .

	

Thus, the single byte subroutine "FN" is
executed, foLloweu by a "D3" or SEP ? -> F which returns control to
the ?XYN subroutine .

	

Folluwiny this, the contents of the D register
is stored in VX and the state of DF (') or 1) is put in VF .

Therefore,

	

it

	

*

	

=3 ,

	

t, , 7, or c, the functions of exclusive or,
shift right, su .;tract, ano shift left respectively are added . This is
summarized in the following table :

N
result
(at

= 8 through D or F
in the execution

best) results . A
instruction follows :

cannot be used
of an immediate
CHIP-b program

because these values would
instruction with uncertain
to demonstrate the 8XYN

01 F2 F8 LD1 81->D 0232 8060 VO=V6
01 F3 81 u234 6B18 VB=18
U1F4 BA PHI D->RA .1 0236 224E DO S .R .
01F5 F6 SHR O->D->DF 0238 F2UA DEBOUNCE
01F6 F6 SHR 0->D->DF 023A E4A1 SKIP IF KEYAV4
01F7 F6 SHR 0->D->DF 023C 11FC GOTO 01FC
01F8 F6 SHR 0->D->DF J23E 123A GOTO CHECK KEY
01F9 30 BP BR 012E 0240 0000
01FA 2F 0242 OOUO

)244 DA35 SHOW 5@ A,B
---- 0246 FOOA VO=KEY

0248 F10A V1=KEY
0200 6370 V3=70 024A 0266 DO M .L .S .R .
0202 640F V4=0F 024C 8011 VO=VO+V1
0204 6A00 VA=00 024E 6A09 VA=09
0206 6800 VB=00 0250 FOF2 I=MSD VO
0208 A270 I='X=' 0252 DA85 SHOW 5 a A,B
020A 2244 DO S .R . U254 6AUF VA=OF
020C 8600 V6=V0 0256 F029 I=LSD VO
620E 6806 V8=06 0258 DA85 SHOW 5 @ A,B
0210 A04 I='Y=' 925A 6AOO VA=00
0212 2244 DO S .R . U25C 00EE
0214 8700 V7=V0 025E 0000
0216 6BOC VB=OC 0260 8600 8XYN S .R .
0218 A279 I='N=' 0262 OGEE
021A 2244 DO S .R . 0264 0000
021C 8042 VO=VO*V4 0266 F8 LDI FO->D
021E 8031 VO=VO+V3 0267 FO
0220 A261 I=0261 1268 A6 PLO D->R6 .0
0222 F055 MI=VO 0269 U6 LDN M(R6)->D
0224 6F00 VF=CO 026A FE SHL DF<-D<-0
0226 2261) DO S .R . 0266 FE SHL DF<-D<-0
0228 80FU VO=VF 026C FE SHL DF<-D<-O
022A 6812 VB=12 026D FE SHL DF<-D<-O
022C A27E I='F=' 026E 56 STR D->M(R6)
022E DAP5 SHOW 5 a A 9 8 026F D4 SEP 2->P
U23U 224E DO S .R .

INSTRUCTION-____ � -_---. RESULT "FN" MNEMONIC

8XY0 VX <- VY
8XY1 VX <- VX + VY (VF <- DF) F1 OR
8XY2 VX <- VX * VY (VF ~- DF) F2 AND

* 8XY3 VX <- VX 0 VY (VF <- DF) F3 XOR
8XY4 VX <- VX & VY (VF <- DF) F4 ADD
8XY5 VX <- VX - VY (VF <- DF) F5 SD

* 8XY6 VX <- (SHR)VY (VF <- DF) F6 SHR
* 8XY7 VX <- VX - VY (VF <- DF) F7 SM
* 8XYE VX <- (SHL)VY (VF <- DF) FE SHL

Use of the program is simple - enter two digit values for X, Y, and
N . These values and the resultant values of VF and VX are displayed .
The

	

fi rst

	

digi t

	

entered

	

for

	

N

	

i s

	

ignored ;

	

the

	

last digit

	

of

	

N
determines the function performed - or, and, add, etc . Depressing key
F restarts the program .

Note- that a machine language subroutine was entered at location
U1 F2 . This provides a new CHIP-8 instruction -FXF2- which sets I to
the hex pattern of the most significant digit of VX . The instruction
loacs the contents of VX into D, shifts D right 4 times, then branches
to the appropriate place in the FX29 subroutine . The space from 01F2
to 91 FR is free for the adaition of ether "FX" type instructions which
are found useful . For example, set timer equal VX and wait, shift VX
Left- cne digit position, anC so on .

Another unused location begins at OUFC and ends at 0104 .

	

This
space is suitable for often used machine language subroutines such as
wait for timer equal Zero . or, by moving the two beginning bytes of
the "FX" subroutine at locations 0105 and 0106 to locations OOFE .and
DUFF, another "FX" instruction -FxUU- can be inserted at locations
0100 to 0106 in front of the FXU7 instruction . A possible "FX"
instruction subroutine which will fit here is 06FEFEFE-FE56D4 . This
series of instructions will shift VX left four times or one digit
position . However, if this is done, one other change must be made .
The interpreter table at , locations U050 to 006F which contains the
addresses of the CHIP-6 instruction subroutines must be changed to
reflect the new entry point of the "FX" subroutine .

	

Locations 005F
and OU6F contain U1 and 05 respectively which is the original starting
address . If the bytes at 0105 and U1U6 are moved to OOFE and OOFF, a
UO must be placed in UO5F and an FE in 006F .

I gave written a simple editor program which resides in the first
two pages of RAM . It consists of a numerical interpreter in locations
0000 -014F

	

and

	

the

	

editor

	

program,

	

written

	

the

	

numerical

	

language,

	

in
locations 015J-ulFF . The functions, of the editor allow me to display
and alter any location . The display address can be rapidly or slowly
incremented or decremented . There is also a copy function which'will
copy any range of locations to any location except 0000-01FF', of
course .

I have also written an expanoed CHIP-8 language which I call CHIP-8
112 .

	

It occupies 3 pages and although very similar, is totally

0279 8b
0270 88 'X= . -027A C8
U2 7 1 53 0278 A8
0272 2U 0276 96
0273 53 U27D 86
0274 88 " Y= . 027E F6 " F= "
0.275 53 U27F 83
0276 2U 0260 F0
0277 23 0281 83
0278 20 0282 80

incompatible with CHIP-e . I was able to add two new op codes by
putting EXA1/9E into the "FX" series of instructions and by combining
5XYC and 9XYO into one op code . The two new functions are branch to
MM if VX = 0 or VX # a and take the form : NXMM . Another major change
over CHIP-6 was the relocation of the "FX" instructions to page 2,
allowing a full page of tr,,is instruction type . Also, the display
instruction was expanaeu to include OR, AND, XOR, and test functions .

I nave witten a LIFE program which occupies practically alt of my
VIP's 2K of memory . It consists of a large machine language
subroutine supported by CHIP-8 .

	

The LIFE grid is a 64 X 32 cell
array ; a new generation is displayed every 2 1/4 seconds .

	

Page 2 is
occupied by a CHIP-6 program which allows the generation of a starting
pattern, clearing the array, depositing predefined patterns, and
starting and stopping the LIFE process . Page 3 is occupied by the
LIFE subroutine . Page 4 is a lookup table which is used to find the
population count of a cell . Pages 5 and 7 are the alternate
generation display tuffers . Page 6 is used to stare predefined
patterns . This program evolved from an all CHIP-8 program to the
inclusion of larger and larger machine language subroutines as I
sought to decrease the cycle time from ten minutes to the present
2 1/4 seconds .

	

I won't believe that unrolling my current LIFE
subroutine

	

any

	

more

	

will

	

bring

	

substantial

	

gain .

	

Possibly

	

there

	

is.a
faster algorhithm which can be employed .

	

However, I think that the
only way to gain a significant increase in speed will be by a hardware

line buffer to reduce the
same 5 bytes .

	

Such a line
allowing the use of three

change . That is, by the addition of a
overhead of repeated DMA requests for the
buffer would have the added aovantage of
cycle instructions .

In the future, I plan to Design a line buffer which will take the
form of - a

	

plug-in module containing the video interface
register, and miscellaneous logic . The plug in module
the video IC in its present location .

	

At the same
investigate the possioility of expanding the display size
or some such size :

chip, a line
will replace
t i me, I may
to 125 by 64

Another hardware change that I Flan to implement is the addition of
some sort of primitive disk-like random access device .
probably be an encless tape loop - cassette or cartridge .

My software plans will be combined into a single operating system,
a super CHIP-X, which will include numerical programming language with
immediate execution of instructions entered from the keypad, editor,
tape access with file management (if I can come up with a satisfactory
random access device), ana perhaps program relocation . The numerical
instructions will probably be three or four bytes in length with one
byte op codes . Of course, more than 2K RAM will be required for all
this . I have orderea the memory expansion kit from
this will be enough .

RCA . Hopefully

I am employed by a large computer manufacturing company
headquartered in Blue Eell, Pa . My background is primarily
electronics, but my software experience is catching up with that .

Most of my adult employment has been in the educational/technical
writing fields . I am more than wi l l ins to join/form a VIP user's
group and to help anyone who wants help-with their VIP .

Please feel free to publish any or all parts of this letter .

If you're a fan of two-player video games, this will please you!

	

The new VIP
EXPANSION KEYPAD is just what you've been waiting for . The 16-key keypad and
cable connects to a socket on the color board or on its own (also new!) VIP
KEYBOARD INTERFACE CARD . Instructions are included for use with either CHIP-8
or CHIP-8C . Available late October, each will be priced under $20 .00 .

NEW FROM RCA

Sincerely,

Peter K . Morrison

The VIP will be sporting vivid color this fall with the introduction of the VIP
COLOR BOARD from RCA. You'll have program control of three background colors &
eight foreground colors with CHIP-8C, the color-language addition to CHIP-8 .
Available late October . Priced under $80 .00 .

Convert the VIP single-tone output to 256 different frequencies with the new VIP
TONE BOARD from RCA . With a single machine language subroutine added to either
CHIP-8 or CHIP-8C, you'll be able to set the frequency and duration of the output
tone . Speaker and jacks included . Available late '78 ; priced under $30 .00 .

Your VIP will be synthesizing two-part harmony with RCA's newest VIP product : the
MUSIC BOARD . You'll have program control of frequency, duration, and amplitude
envelope for each of two independent output channels, and an on-board potentio-
meter will control tempo . There will be a provision for sync output - for multi-
track recording or slaving several VIPs for simultaneous play . The software,
incidentally, will support the PAIA drum synthesizer which can be hooked on thru
the output port . No speaker included . Under $50 .00 .

Add 4K of static RAM to your VIP by plugging in still another new VIP option . The
MEMORY EXPANSION BOARD attaches through the expansion connector, and jumpers will
address any of the first four 4K memory segments . Available by the end of the
year, for under $100 .00 .

At last you can program your own high-level language for the VIP with RCA's new
FROM BOARD and the EROM PROGRAMMER . The board allows two Intel 2716 EROP1s to be
interfaced to the VIP and has provisi ns for placing EROMs anywhere in VIP mem-
ory space . It also allows re-allocation of on-board RAM in memory space . The
programmer allows you to program the Intel 2716 EROM, and comes complete with
software to program, copy, and verify EROM . All required EROM voltages are gen-
erated on board . Both should be available "soon" . The EROM board is priced at
under $50 .00 and the Programmer will be less than $130 .00

A TEXT EDITOR FOR THE VIP

	

Part One
by Don Stein

I was tired of all my friends in the Crystal City Computer Club bragging about
their big, expensive computers, and looking down their noses at my little VIP .
Why, just their latest peripheral add-on board alone, they liked to tell me,
cost more than my entire computer!

But I knew that my VIP was not only cheaper than their monsters, but also better .
After all, my microprocessor chip was as powerful as theirs . Furthermore, they
were always complaining about glitches and bus noise ; I knew that since my VIP
used CMOS technology instead of TTL, it didn't have any glitches . For the same
reason, my VIP was a much better "hands on" computer than theirs - if I wanted
to add hardware, CMOS would be much easier to work with than their TTL machines .
And my VIP had one other advantage . Since practically everything was software-
driven, I could change the way the machine operated by making changes in the
software - I wasn't tied down to a particular operating system or programming
language .

To prove my point, I set out to write a text editor for my VIP .

	

It would have
all the bells and whistles their big machines didn't have - such as forward and
backward scrolling ; forward and backward paging ; automatic repeat on ever key,
including control keys ; full software motor control of two or more tape drives ;
and so forth . And it wouldn't require 8K or 16K of memory, either!

This series of articles describes the text editor I have developed . The reader
can be the judge as to whether I was successful in proving my point .

Character D ispl ay

The first problem was how to display characters with the VIP . Clearly, the regu-
lar display operated under CHIP-8 was not high enough resolution ; I would have to
use full resolution (64 X 128 dots) display described on page 94 of the VIP Instruc-
tion Manual .

Even with this display, the limiting factor would be the number of dots (64) in the
horizontal direction . To get even 16 characters per line, separated by spaces, it
would be necessary to use character displays having only three horizontal dots per
character .

I experimented with several character formats, both upper - and lower - case, and
finally settled on an all-upper-case format permitting eleven rows of 16 charac-
ters per row; each character would be represented by a 3 X 8 dot matrix in a 4 X 12
field . The eleventh row of characters would just touch the bottc of the screen
display area .

This format provides perfectly legible, but not always beautiful characters . Did
you ever try to represent an upper-case N, for example, with a 3 X 8 matrix? None-
theless, since the text editor would use a software character generator, I would
be able to change the character display patterns at any time .

ASCI I Keyboard

The next step was to hook up a typewriter-style ASCII keyboard . There are many
such units available for around $50 . I selected a Risk keyboard, which cost about
$70 including a nice-looking cabinet .

Hooking up the keyboard was simple . I merely ran the outputs of the keyboard into
the inputs of the optional VIP input port . Then the "keypressed" or "valid data

115v
60 biz

strobe" signal was run into one of the flag lines (I used EF3 the same as the hex
keypad, because I wanted to keep EF4 free for other uses) . The "keypressed" or
"valid data strobe" also has to be run to the U25 latch input .

Note that the data inputs and the U25 latch input should be positive logic, whereas
the flag input requires negative logic . I simply used a logic inverter between the
data valid strobe and the flag input . It is not necessary to buy an expensive IC
to get a logic inverter ; a cheap 4001 or 4011 can be wired up as an inverter, using
the scheme shown in figure 1 .

	

I used a ready-made $3 PC board (Radio Shack 276-
154) to mount the IC and the wires . I also used this board to mount the circuitry
for controlling the tape drives (described in a later installment) . The complete
circuit is shown in figure 2 .

7 data lines
from ASCII
keyboard

a) 4 of a CD 4001

	

b) ;4 of a CD 4011

FIGURE 1 - Logic Inverters

FIGIIRF ? - Wiring Diagram to Connect
ASCII keyboard to VIP Input
Port

VIP input connec-
tor lines A thru
H

Line X (EF3)

12 Volt Power Supply

Most ASCII keyboards require a -12 volt power supply . Also, RF modulators require
a negative voltage supply . Therefore, I decided to build a cheap 12V power supply .
The circuit, using Radio Shack parts, is shown in figure 3 . The total cost is
under $10 .

Parts List

T1

U1

U2

C1

C2

- Transformer, 115v primary
18 - 24v secondary, 300 ma
(Radio Shack 273-1386)
- Full-wave bridge rectifier
100 PIV, 300 ma or more
(Radio Shack 276-1152)
- 7812 Voltage Regulator
(Radio Shack 276-1771)
- Electrolytic Capacitor,
1000Mf or more, 35 WVDC
(Radio Shack 272-1032
or 272-1019)

- Tantalum or other high
quality capacitor, 1Mf,
35 WVDC . (Radio Shack
272-1406

Next Month

V

FIGURE 4 - Flowchart to Read ASCII Keyboard, With Automatic Repeat Function

Data Input Software

Set timer
to 1/5
second

9

0' 44

Notes

1 . Assumes KB is hooked up to flag 3
2 . 3/4 Second = '30' in hex
3 . 1/5 Second = 'OB' in hex

The software to read the ASCII keyboard as to test the flag line, read the latch,
and wait until the flag line is no longer active before reading the next character .
In addition, an automatic-repeat feature can be programmed using the VIP timer .

A simple flowchart of this software is shown in figure 4 ; a more detailed description
of the program steps will be covered in a later installment .

Next month I will describe the overall text editor software, along with a generalized
operating system I wrote to go with it . Future installments will cover the tape
input and output routines and tape drive motor control . By the way - the entire
text editor fits in 3K of VIP memory .

The CHIP-8 interpreter is written in the language of the micro-

processor CDP1802 . The microprocessor has, among others, 16 2-byte

registers (R) and two 4-bit registers (P and X) . P is used to point

at the register which is serving as the program counter . X is used

to point to another of the 2-byte registers which is serving to poet

to data in memory . Initially RO (P=O) is sued as the program instruc-

tion pointer . In the CHIP-8 interpreter, R4 (P=4) is used as the

call-routine program counter, R3 (P=3) is the interpreter subroutine

program counter, and R5 (P=5) is the CHIP-8 high-level language pro-

gram counter .

Basically, the CHIP-8 interpreter sees the CHIP-8 program instructions

as a data list . The call-routine takes a single CHIP-8 program instruction

byte with M(R5)(= Memory contents at address R5) .

	

The call-routine recognizes

the first digit and sets R3 to the address of the interpreter-subroutine

(and sets P to 3) . Then the other three digits of the instruction are used

to execute the right subroutine . All those subroutines are ended by setting

P back to 4 so the call-subroutine can take out the next CHIP-8 program

instruction .

The basic flow-chart for the interpreter is then :

P=0 lInitialization
CHIP-8

P=4

	

-~ ~ Caa	l-Rout ine

	

W~RS

	

~ ~ Program. .	,
~Listin

P=3

THE CHIP-8 INTERPRETER

by Gooitzen S, van der Wal

3 4 p

I~ nterpreter-Subroutine

4-~ P F

CorresjLondin~ Subroutine]

Fig . 3

For more detailed description of the CHIP-8 interpreter see flow-chart .

10

~=o

C Al -ROLITMe
r Z

CHIP-8

	

l I,tTERPRLi'LR _

INIT1ALt2AT1614

	

; Ri3.1 OL {Dismie%E~
R6 .1 = ©K

	

i R6- Vx, R7 :UY~
ft z

	

0KG

	

iCTtc%
R1

	

. & tH 6

	

1uTE ItRA Pi Roux imr
R4

	

= p4w

	

CAU. RowT IME f
`PC = RS

	

:

	

t

	

ctit $?P%Gtam Co~rurrQ
STAan w tTM : C((.= A R Di%Pc0Y

TWO-At TVOM

TIfT IN%TR.pwt

'DSCOW -TAt3V.V ; 'FIRST 1NctotilaW Dt61,r

-tRST IIISrat4cTlam wG ar +ooso_p RC

? q r} a c a

)-. 01,97

	

else

	

oiqi

	

o I EB

	

O,A,*

	

Owl

	

oo7c

	

ayq

	

oloc

34P

SECOW0 WST . A 16, r

	

---o 1R3 .1

W

~zx peaotrov.

	

IV

	

0.

SLAB Rowrimc way

a3 ft IPRo6RAM Coamrair .

orlMx

	

o1qc

	

017c

	

01 8a

	

olBB

	

Or tc

	

o vey

p c +1

3-~ P

=> R 3 . Q

4.3
X=T lxHM

rK4
~ V x : T r?1c~~

	

'

'FXOA
j KrY-aVA~

x is,
JVX >Twca!

t-x I &

i v x--> -Tour,

'Fx 33

Vprvx--> ml

it pro°Iroa,n 6-let --> 13.0

Yts

12

'PC + I

Spa :

	

8 I q~-

	

l

	

VA s 1<

?-3

	

2 RMA
X.2

r4.

0 ~,M1M,
~~oNnn

3xkK

SVP 11 YX:Kt

SxYo

SKiP ;t ux:vv

XYO
cw.%p :4 ux*vf

yXkw

SK+P
.i

UX~kl(

I3M,n,n,
C,iannn,Vo

XxK

KK -3o vo(

VX !KK

SIO . 'PC v-,T-K
(rata -% ao1kwe %

?C- 1

NO

6zY0
vy ->vx

CxKK

AMMM

OMnrt-~~

COMING NEXT MONTH

p%*. a%4 o} {oar "0trs

NO

'PC -r 4

M G

S

J . W . Wentworth disassembles the VIP operating system . . . More about Don Stein's

VIP Text Editor . . . Rick Simpson modifies CHIP-8 to provide I/0 instructions . . .
VIPpers' Letters To VIPER. . . . New CHIP-8 Games . . . More news from RCA . . .

1010101 xJxI x]x(x]

I RC.I =TV PACE

0 X X XrXTKIE

YES

SHIFT REA BITS

RCO :

STK

~765432(0
I -xixxxxpTxI

T VA

(TV, PATT W,A)

RD-1 RF.O

	

M6 M(6+ I
NOTE* : F-

76543'21

N TIMES

lo lo

	

01-o lo lxlxI x1

NEXT PAGE

CODING FORM FOR RCA COSMAC PROGRAMS

Title

	

J . W . Wentworth's Analysis of VIP CHIP 8 Interpreter

:, F iaRY PAGE 00

	

Programmer

OX -0 RB .1 (where OX is the highest
memory page no . as determined by
Operating System)--designates display
page .

(stack pointer)

CF '} R2 .0 (stack pointer set to
OYCF, where Y = X-1)

Set RI (PC for Interrupt Routine)
to 8146

\

	

Pre-set R4 to OOIB in preparation
for assignment as PC

01 -o- R5 . 1

FC -- R5 .0 (R5 now set to OIFC ; will
serve as PC for CHIP-8 instructions,
commencing with two instructions
included on page 01) .

4 -W P (R4 becomes PC at this_eointj ____
--FETCH-AMD DECODE ROUTINE-r~ ..~rrrr~.-r-r-r--rr-r-rrrrrrr~.--rrrrr
OY -w- R7 . 1 (high byte of VY pointer)

Load by R5 and advance (Fetch first bytc-
of Chip-8 Instruction)

Put in RF .0 (temporary storage)

Shift right 4 times (MSD to LSD position)

I f D =

	

0 (i . e .,

	

i f Op Code digit is
zero), branch to 0044

OR Immediate with 50

Put in RC .0 (RC now points to 005a,
where "a" is MSD of CHIP-8 Instruction)
Get RF .O (high byte of instruction)

AND with OF, OR with FO (thus
forming byte Fb, where "b" is the
second hex digit in the CHIP-8
instruction, used in some instructions
to designate VX)

Put in R6 .0 (R6 becomes VX pointer)
Load via R5 (second- byte of CHIP-8

instruction)

Shift right 4 times

OR with FO and put i n R7 .0
(sets VY pointer)

Load via RC and advance (Loads high
byte of address for appropriate subroutinE

Put in R3 .1
Get RC .O (=5(a+ l))

Add OF, put in RC . 0 (points to love
byte of start address for appropriate
subroutine to execute CHIP-8 instruction;

Load via RC

CODING FORM FOR RCA COSMAC PROGRAMS
Tine

	

J . W . Wentworth's Analysis of VIP CHIP 8 Interpreter
1V-IENTORY

SUBROUTINE TO TURN ON DISPLAY
_
"rr~rwrrrrr-r- rr-
Decrement R2

r
Tstack pointer) 6~

J7F

7D

A4

75 FA
76 .3F
77 F6
7s F6

?E

79 F6

7A 22

7s 32
7c 07

FA

IF
FE

AND with 3F (save lower 6 bits)

Shift right 3 times (save middle 3 digits)

Decrement stack

Store in stack
Load via R7 (VY)

AND with 1F (save 5 lowest bits)

PAGE 00 Programmer

Put in R3 .0 60 00 Filler 1st Digit of Instruction
Call subroutine first of
CHIP

designated
8

by digit
instruction (if not zero) 61 7C l Start Address for

Branch to 001B to fetch next instruction 62 7S Low bytes
for sub-

~'
1

Subroutine
017C

-----------------------w------- 63 83 routine 2 0175
ROUTINE FOR FIRST DIGIT = 0 pointers 3 0183rr-"r"-"rww-"www""w"" 64 4 018B
Get RF .0 (high byte of instruction),

65 95 5 0195
AND with OF to save LSD only 6 01B4

66 $4 7 01B7
Put in R3 .1 (selects page on which sub-

67 S7
8
9

OIBC
0191routine will be found)

Load via R5 and advance (2nd byte of i nst .} F8~
A
B

OIEB
0IA4

Branch to 0040 to call subroutine (OOEO for 69! 91 C OID9
erase page, OGEE for return from subroutine, D 0070
0MMM for mach ire - Ian u e subrouti ne 64 EB E 0199

F 0105

Turn display ON (interrupts will occur,
controlled by routine at 8146) 6~C D4
Increment R2 6D 70
Return to 0042 6E 99
Filler 6F 05 DI SP LAY SUBROUTI N E ~lst D~it = D~
Filler 70 oC Load by R6 (VX)

71 FA
1720/

Put last 3 bits in RE . 1

High bytes for pointer to start of sub-
routines selected by first digit of CHIP 8 ?3 ~F
instructions (1 through F) ?4 06 Load by R6

CODING FORM FOR RCA COSMAC PROGRAMS
Title. Wentworth's Analysis of VIP CHIP 8 Interpreter
MEMORY PAGE 00 Programmer

80

81

8

83

84

85

Shift left 3 times

OR with top of stack

Put result i n RC .0
Get RB .1, put i n RC . 1 (OX)--RC now
points to start address of first byte of
pattern .
Load via R5 and advance--fetches 2nd
byte of CHIP 8 instruction .
Put LSD in both RD .0 and R7 .0
(No . of bytes i n pattern)

DO -.* R6 . 0

00 -.so RF .0

Get R7 .0 (No . of bytes) ; branch i f D=O
to OOF3 . (When branch occurs, display
bytes have been processed and stored
commencing at OYDO) .

Decrement R7
Load via RA (t pointer) and advance
(Loads display byte)
Put i n RD . 1

Get RE . 1

	

(3 LSB's of VX), Put in RE . 0

Get RE . 0;

	

i f D = 0, branch to A4 .
(When branch occurs, display bytes will
have been split into two parts in the event
that display address did not coincide with
a memory byte address .)

Get RD . 1, shift right, and return to
RD . 1 (left portion of split display byte)

Get RF .O, ring shift right (icking up
carry, i f any, from step 9C , return to
RF .0--these instructions form right portion
of split display byte .

19

Tl~

ail Do

J
Decrement RE

Branch to 0098

Get RD . 1 (left portion of display byte)
and store via R6

I ncrement R6

Get RF .0 (right portion of display byte)
and store via R6

Increment R6

Branch to 008E

Wait for display interrupt
C -* X

	

(C points to start address for
first new byte i n display page)

DO -o R6 .0 (points to first processed
display byte)

Get RD .O (no . of bytes remaining) ;
if D = 0, branch to OOD9

branch to OOBE

01 -w R7 .0 (marker to indicate that a
"collision" has occurred)

Load via R6 (processed display byte)
and advance

XOR with existing display byte

00 -* R7 . 0 (R7 . 0 wi I l be used as a
marker for "collisions" between new and
existing patterns .)

Load via R6 (processed display byte)
AND with contents at current address

in pattern on display page
Decrement RD
If D = 0 (i .e ., no "collision" occurred)

CODING FORM FOR RCA COSMAC PROGRAMS

Title

	

J . W . Wentworth's Analysis of VIP CHIP 8 Interpreternri~mi~mr~rr

	

r
:% qA.EA,'ORY PAGE 40

	

Programmer

Store via RC (in display page)

Load from to

	

of stack '(3 LSB's of display
page address , XOR with 07; if result is
zero, branch to OOD2 (display pattern is
at right-hand edge of display "window") .

I ncrement RC

Load via R6 (right portion of processed
display byte), AND via R6 (existing con-
tents of dispia

	

page address) ; branch if
result is zero (i .e ., if there is no
"collision'") to OOCE

01 1 R7 .0 (marker to indicate that a
"collision" has occurred)

Load via R6, XOR with contents already
present at designated address on display
page, and store via RC (on display page) .

Decrement RC

I ncrement R6

Get RC .0, Add 08, and return to RC .0

If DF = 0 (i .e ., if next byte location
remains on display page) branch to 00133
(Program "falls through" this point when
pcfitern reaches bottom of screen)

FF -+v" R6 .0 (R6 points to Variable F)

Get R7 .0 ("'collision" marker), store
via R6 (i .e ., as Variable F)

I ncrement stack
Return to FETCH routine at 0042

F~A~~~I~P~IAYPAGE-=1nst ~OEO -rrrrrrrrrrrrrrwrrrrrrrrrwwrrrrrrrrr
OX -- RF .1

93

	

00 -- v

SF

	

Store via RF

FF

	

Get RF .O ; if zero, branch to

32

	

OODF for exit to FETCH

Fillerrrrrrrwrrwrrwrrrrrrrrrwrrr~rrrrrrrrw
I NST. OOEE--Return from Su......rrrroutinewrrrwrrrrwrwrrrwrwrrrrrwrwrwrrrrwr
Load from stack and advance, put i n
R5 .1
Load from stack and advance, put in R5 .0
(R5 now points to next CHIP 8 instruction)

Return to FETCH routine at 0042
~P~CRT OFDiSPLAYROUTINE~r

	

w..
\r rrrrrwwrr~.wrrrwrwrwrrrwwr rwrrrrrw
Get RD .0 (remaining no . of bytes in

F40 7 1 / pattern), nut i n R7 . 0

Get R7 .0; i f zero, branch to OOAC
(When branch occurs, RA (I Pointer)
will have returned to its initial value)

Fillers

Zz

PACE 01

Return to 0042
!return to 0042 Instruction tA19~{Let

1
= 5-byte displaypattern for LSD of VX

run FXOA jLe

	

"" _r_"r_rr__ "rwrww__wrr_w_wrr__wrr_
j ++++r__~r__rrrrr__w

	

__ 2A 81 81

	

RA . 1
{-1

. .-I F'0B"i FOR RCA COSMAC PnOGRAMS
J . Vf . Wentworth's Analysis of VIP CHIP 8 Interpreter

a

FINAL DECODING OF "F" Instructions
Load via R5 and advance (2nd byte of

CHIP 8 instruction)
put in R3,Sgo to designated address)
I rlstruction FX07_ " wLet VX =Time

Stare via R6 (i .e ., as VX)

Fillers

RC - 8195 (keyboard scanning subroutine)

Decrement stack pointer
Cal! keyboard scanning SR at 8195
(key entry is in D upon return)
Increment stack pointer

Proarammer

Store via R6 (i .e ., as VX)
Return to 0042
l nstruction FX~S

	

Set Timer to V~C~

Return to 0042
- --=- 3(]Fr strt, ction FRIF_CS et tone duration = V

Load via R6 (loads VX)
Put ;n R8 .0 (tone timer)
Return to 0042

Decimal 100

Decimal 10
Decimal 1

	

j

Constants needed for
Instruction FX33

57JUcT,on TRIFCL7e7tT=-F17 VAS

Get RA . 0

2 1

Add VX

Put i n RA . 4 (as updated I pointer)
If DF = 0 (i .e ., if updated I remains
on the same memory page), branch
to 0128

Increment RA .1

Load via R6 (V X)

AND with OF (save last digit),

put in RA .O

Load via RA (start address for 5-byte
pattern of hex digit), put i n RA .0

Return to 0042__rr_"r_
Instruction FX33 Let MI = 3-decimal
6-o- X digit equivalent of V X

Load via R6 (VX), put i n RF .1

01 -w RE . 1

1B -w- RE .O

	

(RE = 0118)

Decrement RA
Increment RA (cancels prev . step upon
first entry into pgm loop, but needed
i n later "passes" around the loop)

Store 00 via RA (I pointer)

FORM FOR RCA COSMAC PROGRAMS

.,,! . W . Wentworth's Analysis of VIP CHIP 8 Interpreter. . r

	

r

	

Analysis

	

o . r ~.rW.~r

	

.,rmri

~`,)RY PAGE

	

01

	

Programmer

5FP17

i

Load via RE (Decimal 100, 10 or 1)

Subtract from M(R6)--i .e ., subtract
from VX

Branch if Minus to 4B

Store result via R6

~ Increment memory location contents
pointed to by RA (= I Pointer)

B ; -atich to 0140

Load via RE and advance

Shift Right
If DF = 0 (i .e ., if decimal 100's, 10's
and 1's have not been processed), branch
to 3C
Get RF .1 (original value of VX)

Store via R6 (restores original value of VX)

Decrement RA twice

Return to 0042
Filler_

. - InstructionFX55ICE MI=VOVX..r~~srrrrrrrrrr

	

rrrrrrrrrrr -------
decrement stack pointer
Get R6 .0 (pointer for VX) and
store i n stock

l

FO -o- R7 .0

Load via R7

I ncrement RA

Increment R7

I f D =,P6

	

0 (i . e . ,

	

i f R7 at Step 5E has not
yet reached value of VX pointer), branch
to 5B
Increment stack pointer

__Return to 0042
Instruction FX65

_
CLet1I0VX-=_M1]------

Decrement stack pointer
Get R6 .0 (VX pointer)
Store in stack

FO -*- R7 .0

Load via RA (i .e ., viaD
Store via R7

Get R7 .0
XOR with top of stack (VX pointer)

Increment R7
Increment RA
If D X 0 (i .e ., if R7 at Step 6E has not
yet reached value of VX pointer),
branch to 6B
Increment stack pointer
Return to 0042rrrrrrr-rrrrrrrrrr rrrrrrrrrrrrrrrrrrr .
Instruction 2MMM ado subrouti ne at MMM)rrrr~.rrrrrrrrrrrrr rrrrrrrrrrrrrr.rrrrr
Increment R5 (point to next CHIP 8 in-

struction after return)
Get R5 .0
Decrement stack pointer
Store in stack and decrement
Get R5 .1

Store in stack
Decrement R5 (points to low byte of

current instruction)
Si

	

RA

	

17r' I A r,r

	

Load via R5 and advancetore v a

	

(I pointer)P

XOR with top of stack (VX pointer)

	

17E186 1

	

Get R6 .0 (contains 2nd digit of
current instruction)

CODING FORM FOR RCA COSMAC PROGRAMS

Title

	

,1 . W. Wentworth's Analysis of VIP CHIP 8 Interpreter

; is> ORY PAGE

	

01

	

Programmer

AND with OF (save 2nd digit of Chip 8
instruction) and put in R5 .1

(R5 now points to first instruction of
subroutine commencing at OMMM)
Return to 0042
Instruction 3XKK __ _~Skip if VX = KK
Load by R5 and advance
6-o- X

XOR (operands are KK and VX)

If D / 0 (i .e ., if VX / KK), branch
to 0 182

Increment R5 twice (causing skip of
next Chip 8 instruction)

_Return to 0042

	

_

	

_ _
instruction4XKK---_

	

Ci ifVX_~r _w _mow___
Load by R5 and advance (KK } D)

6 -s- X

XOR (operands are KK and VX)

I f D ~0, branch to 0188

Return to 0042
Instruction 9XY0 ~S kip i f VX

	

VY
Load by R5 and advance

Load by R7 (VY -b- D)

Branch to O1$C (operands for subsequent
XOR operation will be VY and VX)

=VY~_w_-_ nstruction5XY0 t.)KipifVA

	

_~
Load by R5 and advance
Load by R7 (VY } D)
Branch to 0184 (operands for subsequent

XOR operation will be VY and VX)
---------------- IS

KipInstructions EX9E

	

Skip i f VX = Key

	

and
EXA 1 JSkip if VXY Keyj

6 t X (RX points to VX~
Output VX to keyboard latch, increment R6
Decrement R6 (cancel advance of prey.step)
Load by RS and advance (either 9E or A1

is loaded into D)
Put in R3 (go to designated address)

If EF3 = 1 (i .e ., if key matching LSD of
VX is down) go to 0188

Return to 0042

7} X

Put in R5 .1

Return to 0042

Store via R6 (as VX)

6 -o- X

Add (D = VX + KK)

I f EF3 = 0 (hex key matching LSD o
VX not pressed), branch to 0188

Return to 0042
_________"____--------------�.instruction BMMM SiGo to 0NIN1i 111

FO -0- R7 .0 (R7 points to VO)

Load by R5 and advance (loads 2nd byte
of instruction)

Add VO

Get LSD of R6 .0 (2nd digit of instruction

If DF=O (i .e ., if there was no carry from
addition operation at Step A9),
branch to OIB2

Instruction 6XKK~Let VX = KK)
Load by R5 and advance (KK -v-

rwr

Return to 0042
Instruction 7XKK jLet VX = VX + KKw___rww~+.~~rwrw~rrw ""+r~,i
Load via R5 and advance (KK -e- D)

Store via R6 (cu updated VX)
Return to 0042
Instruction 8XYN CALU operations wi in VX

land VY as operands)
Load by R5 and advance JGadS_Yr;;_6_Y t_e___

of instruction)
)AND with OF (save 2nd digit)

'~ :f 01 ~tiG FORM FOR RCA COSMAC PROGRAMS

J . W . Wentworth's Analysis of VIP CHIP 8 Interpreter

PAGE 01 Programmer

Load by R7 (VY -jo- D)

Store via R6 (as VX)
Return to 0042

Put in RF .0

Decrement stack pointer

D3 -o D

Store i n stack and decrement
Get RF .0 (last digit of instruction)

OR with FO

	

(forms an instruction code
i n the ALU group--codes F1, F2, F3,
F4, F5, F6, F7 and FE are valid)

Store i n stack

	

(stack now holds a
2-instruction routine)

6 -o- X

Load by R7(VY-+-D)
2 -o D (calls routine developed in stack)

	

1-__l

	

1 Put 2nd digit in RA . 1

Store result via R6 (as VX)

FF -0- R6 .0 (points to VF)

00 } D

Ring Shift Left (moves DF to LSB)

Store via R6 (as VF)
Return to 0042
I nstruction C XKK Let VX = Random byte,

masked b~, KK~Increment R9

	

rrr_rr_rrr

Get R9 .0, put in RE .0 (NOTE : R9 is a
special pointer for this random-number
generator, and is incremented once for
ev

	

V

	

n by thi interrupt rqut i ne .)
01 -~

	

.

	

'(RE now points to some byte
on memory page 01)

Get R9 .1 (Random byte resulting from
last previous use of this instruction)

E -a-- X

Add byte pointed to by RE

Store via R6

Ring shift right
6 -b- X
Add original byte formed at Step EO

to its ring-shifted version
Put in R9 .1 (as starting point for next

use of this instruction)
Store via R6 (byte sti I I un-masked)
Load via R5 and advance (Loads 2nd

byte of Chip 8 instruction, KK)
AND with byte pointed to by R6
Store result via R6 (as VX)
Return to 0042
I nstruction AMMMIet,~ = OMMMI
Load by R5 and advance "2nd byte of

Get R6 .0

Fillers

instruction)
Put in RA .0

Return to 0042

Preliminary CHIP 8 instruction to
precedeevery CHIP 8 program--calls
routine at OOEO to erase display page
Second preliminary instruction to
precede every CHIP 8 program--calls
routine at 004B to turn on display

J . W. Wentworth's Analysis of VIP CHIP 8 Interpreter

R5

	

Pointer for CHIP 8 Instructions

	

01FC

R .`

	

,1'X Pointer : in DXYN (Display) Instructions, also serves
its l-)oi)lt(,r for processed display bytes, later as VF pointer

	

oY-r

117

	

%'Y Pointer for instructions involving VY ; VO Pointer for
RM .1%1M Instructions ; R7 .0 is a "scratch pad" register in
DXYI`~ . F`X55 and FX65 Instructions

	

OY--

118

	

Tillers controlled by Interrupt Routine (R8.1 is a general-
c)urpose tinier ; R8 . 0 is a tone and de--bounce timer)

1? U1

	

Special Pointer and "Scratch Pad" used in Random Number
Genvr~ato)r utilized in CXKK Instructions--changed by
Interrupt Routine

RTE

	

Both Suctions Used as "Scratch Pad"! Registers in DXYN
(Dishl ; :-ty) bistructions

Pointer for Constaiits Needed in FX33 Instructions ; RE . 1
is a "Scratch Pad" Register for DXYN (Display) Instructions

l F

	

Display Page Address Pointer for OOEO (Erase) Instructions ;
111' . U Used as "Scratch Pad" in FETCH AND DECODE
1ioutine ;>nd also in DXYN histructions

IL%

	

I Pointer for CHIP 8 Instructions

	

w---

1113

	

fl.B .1 is Display Page Pointer ; RB . 0 is "Scratch Pad" for
Mterrul)t Routine

	

OX-_

11C

	

Tenihora_,ry Pointer for FETCH AND DECODE Routine ;
D(-'sti1'at oii Address Pointer for DXYN Instructions ; PC for
KeNi)o,ir(t Scani,in;; Subroutine in FXOA Instructions .

	

00-

rrr - - w - -__ _ -- - - -- r - - - --- - - - ----- - - -
'N'OTE : Reo)-inters available for machine-language subroutines are R7, RC,
.ill), RE , uid RF . but subroutines themselves must provide any initial settings
i , (1qi.iired--CIIIP 8 instructions may alter these register settings, as indicated

M basic VIP system with 2K RAM, OX = 07 and OY = 06.

	

In general,
pest memory page and OY =- OX - 1 .

25

1AIARY OF` REGISTER FUNCTIONS IN CHIP 8 PROGRAMS

initial

Setting;

RO DMA Pointer w_ _ s

R1 Program Counter (PC) for Interrupt Routine 8146

R2 tack Pointer OYCF

113 PC for Interpreter Subroutines ----

114 1?C for Interpreter FETCH AND DECODE routine 001B

COMMENTS

YES! I'd like to subscribe to the VIPER and receive all ten issues of this year's volume! I enclose $15.00 in full payment.

Name
(Please print or type)

Address

City

	

State

	

Zip

Cash, Check, Money Order Enclosed

MC/VISA/BAC Number

	

Exp. Date

MC Interbank No.

Required Credit Card Signature

You may let other VIP owners in my

	

El

	

I'd like to see articles in the VIPER about:
area know I have a VIP, so they can
contact me .

C1

	

I am interested in forming/joining
(circle one) a VIP Users group

MAIL TO: VIPER ; P.O . Box 43 ; Audubon, PA; 19407

VIPER

P.O. Box 43

Audubon, PA 19407

LOti6 L Vd 'uoqnpnV

Elr xo8 '0'd

a3dlA

